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coincide with the faces of the cells. While a Kelvin cell has 2
squares and 4 hexagons per vertex, the TCP foams have only
pentagonal and hexagonal faces (on average, 5.2 and 0.78 in the
Weaire–Phelan foam and 5.3 and 0.71 in the C15 foam), which
may be related to their importance for foams (32). The A15 and
C15 Voronoi tessellations are the TCP structures with the most
or least average number of faces f̄ per cell (32). The Weaire–
Phelan structure has the largest value of f̄ = 13 + 1/2, and the
C15 structure has the smallest f̄ = 13 + 1/3.

In the relaxed foam, Plateau’s rules guarantee that each ver-
tex has valency 4 and that the incident bond angle between any
2 edges is arccos(−1/3)≈ 0.608π≈ 109◦. While the first state-
ment also holds for the progenitor tessellations, the second must
be violated by a tessellation with flat faces (32).

For the A15, C15, and BCC lattice, the distributions of bond
lengths and angles in the weighted Voronoi diagrams with
straight edges are plotted in SI Appendix, Fig. S1. Detailed statis-
tics of the bond length and angle distributions of both the foams
and their progenitors are listed in SI Appendix, Table S2.

All edges of the BCC Voronoi diagram have exactly the same
length, in contrast to those in the TCP structures. There is less
variation in the A15 (18.5%) than in the C15 structure (26.3%).
The variance of bond lengths decreases for the relaxed foams
(14.7 and 24.7%) with curved edges.

The average of the bond angles in the BCC Voronoi tessella-
tion differs from the tetrahedral angle by about 0.5%. For the
A15 and C15 crystals, the average bond angles are an order of
magnitude closer to the tetrahedral value with differences of
about 0.09 and 0.06%, respectively. In that sense, the weighted
Voronoi diagrams of the A15 and C15 crystals have effectively
tetrahedral bond angles. Moreover, the standard deviations of
their bond angles are smaller than those of the BCC lattice (SI
Appendix, Table S2).

Phoamtonic Networks
Next, we construct a photonic network based on the edges of dry
foam. Its volume fraction φ is the fraction of volume covered by
the high dielectric material. Typical values of φ that maximize
the PBG are about 20% (49). The Weaire–Phelan foam becomes
unstable at about 15% volume fraction (8). So we do not con-
sider wet foam, where the Plateau borders have tricuspoid cross
sections. Instead, we start from dry foam structures and homoge-
neously thicken each edge. Each edge is finally the medial axis of
a spherocylinder, where the radius is a tuning parameter. Such a
foam-based network is not literally a foam, but for simplicity we
will henceforth refer to heterostructures derived from foams in
this way as “foams” or “foam networks.” Fig. 1 illustrates these
3D networks.

For an accurate prediction of the photonic band structure,
we solve the frequency-domain eigenproblem with the plane-
wave expansion method implemented in the Massachusetts
Institute of Technology (MIT) Photonic Bands (MPB) soft-
ware package (50). To achieve high numerical precision, we
choose a high resolution of the discretization, a low toler-
ance of the eigensolver, and a high sampling of the k-points;
for more details, see Creating and Analyzing Phoamtonic Net-
works. Using primitive unit cells and the standard notation for
high-symmetry k-points of the Brillouin zone, we choose paths
along the boundary of the irreducible Brillouin zones similar to
those in ref. 51.

The dielectric contrast ε is the ratio of the dielectric constants
of the high- to low-dielectric material (24). Unless otherwise
stated, we assume a dielectric contrast of 13 to 1, which is com-
monly used in the literature as a standard when comparing the
performance of different photonic material designs (28, 30, 40).
To facilitate experimental realizations, our map of gap sizes
below shows the gap–midgap ratios at lower dielectric contrast.
For each network, the radius of the edges (spherocylinders) is

optimized for a maximal gap–midgap ratio ∆ω/ωm , where ∆ω
is the frequency width of the gap (the difference between the
lowest-frequency eigenvalue in the lowest air band and the high-
est in the HDB), and ωm is the frequency at the middle of
the gap. The radii that maximize the gap–midgap ratio differ
by a few percent, and so does the corresponding volume frac-
tion covered by the network; for more details, see SI Appendix,
Table S3.

For the Weaire–Phelan, Kelvin, and C15 foam networks, the
photonic band structures are shown in Figs. 2–4. Time-averaged
electric-field energy densities of modes in the HDBs are depicted
together with small portions of the 3D networks in Fig. 1. More
energy densities are presented in Movies S1–S3.

The same analysis is repeated for 4 classic photonic crys-
tals: the diamond, Laves, hexagonal diamond, and simple cubic
networks. Their photonic band structures are depicted in SI
Appendix, Figs. S2–S5.

Gap Sizes. The PBG sizes, measured by the gap–midgap ratio
∆ω/ωm , are 7.7% for the Kelvin foam, 13.0% for the C15 foam,
and 16.9% for the Weaire–Phelan foam. The minimization of the
surface area increases the gap size by 0.7, 0.3, or 1.3%, that is,
comparing the progenitor tilings with straight edges and slightly
nonuniform vertices to the relaxed foams with curved edges and
tetrahedral vertices. The gap edges are listed in SI Appendix; for
further details, see also SI Appendix, Table S3.

The TCP foam networks with effectively tetrahedral bond
angles have distinctly larger gap sizes than the Kelvin network.
Between the 2 TCP structures, the Weaire–Phelan network has
the larger gap size, presumably due to the smaller variation in
bond lengths. The Weaire–Phelan foam has not only the cur-
rently smallest known interfacial area; its corresponding network
also has the largest PBG.

Perhaps due to the variations in bond lengths, the gap sizes of
our foam-based photonic networks are as expected smaller than
the largest known gaps, which are found in networks based on
the diamond (31.6%) and Laves (28.3%) graph; for more details
and other classic networks, see Classic Photonic Crystals and, e.g.,
refs. 24, 30, 40, and 49.

Fig. 2. Photonic band structure for the Weaire–Phelan foam in a cubic
primitive unit cell at a dielectric contrast ε= 13 and a volume fraction
φ= 21.7%. For a 3D sample, see Fig. 1 (Left).
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Fig. 3. Photonic band structure for the Kelvin foam in a primitive unit cell
of a body-centered cubic crystal at a dielectric contrast ε= 13 and a volume
fraction φ= 19.6%. For a 3D sample, see Fig. 1 (Center).

Gap Isotropy. Isotropic PBGs are highly advantageous in pho-
tonic applications because they enable freeform waveguides and
flexible circuit design (27, 46). Photonic quasicrystals as well as
amorphous photonic networks (elaborated on in the discussion)
are more isotropic than classic photonic crystals (25, 26, 46, 52).

Here we show that phoamtonic band gaps also have a high
degree of isotropy. Different metrics for isotropy of PBGs have
been proposed (26, 52). Effects from the folding of bands for
complex unit cells can largely be avoided by restricting the
anisotropy analysis to the boundary of the Brillouin zone (26).
We quantify the variations of the bands at the boundary of the
Brillouin zone that corresponds to the primitive unit cell. An
intricate reconstruction of the dispersion relation via experimen-
tal or simulated measurements of transmission and phase delay
(52) is beyond the scope of this study.

Here we define the gap anisotropy index A that captures vari-
ations of the PBG at the edge of the Brillouin zone (given a
primitive unit cell):

A :=
√

Var[ωHDB] +Var[ωLAB]/ωm,

where ωHDB and ωLAB are the eigenfrequencies of the highest
dielectric and lowest air band, illustrated in Movie S4. See SI
Appendix for a precise definition of the variance Var[.] and its
estimator.

The C15 foam is found to have the lowest anisotropy
index (1.0%), very closely followed by the Weaire–Phelan
foam (1.2%). So the TCP foams provide the possibi-
lity of self-organizing photonic networks with remarkably
isotropic PBGs.

The gap of the Kelvin foam is distinctly more anisotropic
(3.5%), which is similar to the Laves network (3.4%) and the
diamond network (4.2%). These networks are still comparably
isotropic relative to the simple cubic (8.8%) and hexagonal dia-
mond (9.7%) networks. Note that the relative isotropy of the
diamond at the boundary of the Brillouin zone is commonly
understood as one of the reasons for its excellent photonic
properties.

Maps of Gap Sizes. Applications seeking a trade-off between dif-
ferent physical properties generally require deviations from the

rod radii that maximize the PBG of the network. For example,
at small volume fractions φ, the stiffness of solid foams (i.e.,
their shear modulus) increases with φ (16). Moreover, differ-
ent techniques of self-organization might have restrictions to the
dielectric contrast ε.

In an extensive numerical study, we have therefore computed
the photonic gap–midgap ratio as a function of ε, where for
each value we have separately optimized the radius to max-
imize ∆ω/ωm . For ε= 13, we have varied the volume frac-
tion φ, which we estimate by the dielectric filling fraction as
defined in SI Appendix. Fig. 5 compares the gap sizes of the
foams to those of the diamond network and other prominent
photonic crystals; see SI Appendix for more details. Fig. S6
shows 3D maps of gap sizes, that is, ∆ω/ωm as a function of
both ε and φ.

The Weaire–Phelan foam supports reasonable gap sizes of
about 8% down to a dielectric contrast ε≈ 9, where the radius
with the maximal PBG increases by about 15%. The PGB van-
ishes for ε< 6.5. As expected, the diamond network has the
largest gap for all dielectric contrasts.

All networks are relatively insensitive to the volume fraction.
For the Weaire–Phelan foam, PBGs of about 8% (at ε= 13) per-
sist down to half of the value that maximizes the gap–midgap
ratio. At these volume fractions, a wet Weaire–Phelan foam is
stable. So its solidification can, in principle, directly lead to a
photonic network, although this remains to be confirmed by com-
puting the band structure for a network with Plateau borders
(with a tricuspoid as cross section).

Discussion and Outlook
Motivated by the connection between Plateau’s laws and known
preferential geometries of photonic networks, we positively
answered the question of whether foam networks can exhibit
complete PBGs. Converting the edges of crystalline dry foams
into photonic networks, we found pronounced PBGs. They are
smaller than for the diamond network but larger than in typ-
ical self-organizing systems. The fairly isotropic PBGs of our
phoamtonic networks are advantageous for photonic circuit and
waveguide design.

One of the motivations for studying the crystalline foams
described in this paper is to identify characteristics that may

Fig. 4. Photonic band structure for the C15 foam in a primitive unit cell
of a face-centered cubic crystal at a dielectric contrast ε= 13 and a volume
fraction φ= 18.8%. For a 3D sample, see Fig. 1 (Right).
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Fig. 5. Maps of gap sizes: gap–midgap ratio ∆ω/ωm as a function of (Left) the dielectric contrast, where the radii are optimized at each value of ε to
maximize ∆ω/ωm [for precise values, see Database S1 (53)], and (Right) the volume fraction at a dielectric contrast ε= 13. The vertical lines indicate the
maximal gap sizes shown in Figs. 2–4. For more details on the other photonic crystals, see SI Appendix. For 3D maps of gap sizes, see Fig. S6.

apply to amorphous foams in 3D. To date, complete band gaps
in amorphous networks have only been demonstrated for rel-
atively small systems and are not guaranteed to persist as the
system is made larger (30). Amorphous foams are interesting
candidates because they would have the advantages of perfect
isotropy and tetrahedral bond angles. In addition, they may have
less constraining conditions for manufacture compared to crys-
talline foams. On the other hand, the bond length distribution
is much broader than for crystalline foams. At present, the only
examples of amorphous networks in 3D (including foams) have
either no complete PBGs or PBGs that may not persist in the
limit of large system sizes; see, for example, ref. 30. We are cur-
rently using the successful experience with Weaire–Phelan foams
to guide us in constraining the constructing of amorphous foam
heterostructures that will have robust complete PBGs.

Utilizing Phoamtonics. Exciting prospects of phoamtonics for
applications are 1) the self-organization of photonic networks
and 2) the flexible trade-off between physical properties.
Importantly, the gap size of the Weaire–Phelan network exceeds
that of geometrically optimized synthetic opals and other typi-
cal examples of manmade† self-organizing large-scale photonic
crystals (<15% at ε= 13) as reported in ref. 42.

Self-assembly of crystal structures that correspond to the
Kelvin or Weaire–Phelan foam as well as to other Frank–Kasper
phases have recently been reported in a growing list of soft-
matter systems; see ref. 38 and references therein. Phoamtonics
might thus help with the self-organization at various length
scales and offer new opportunities to the recent progress and
remaining challenges of the self-assembly of photonic nanomate-
rials (56, 57). Particularly interesting is the connection between
foams and self-assembling supramolecular micellar materials or
block-copolymers (38, 58). An alternative approach could use
the self-assembly of emulsions (37), e.g., with suitably patchy
droplets and emulsion templating for the fabrication of open-cell
foams.

We envisage that phoamtonics may be an effective way of fab-
ricating large photonic network solids for applications involving
longer wavelengths, such as THz (59, 60) and X band radia-
tion (61). These bands require cell sizes in the millimeter or
submillimeter regime, where standard techniques of solid open-
cell foams might be highly useful for the fabrication of extended

†Despite recent insights into the formation of biological photonic nanostructures (54,
55), their technological utilization remains a challenge.

photonic networks. Applications at visible wavelengths are more
challenging with current technology.

Multifunctionality of Foams. Foams provide an excellent class of
multifunctional materials that provide a good trade-off between
a number of different physical properties. Phoamtonics thus
offers versatile solutions for multipurpose technologies that
require further optimizations besides a maximal PBG. Foams
are particularly promising lightweight materials because other
favorable properties have already been explored, identified, and
utilized for a broad spectrum of technologies (2). Besides elastic
moduli (17) and conductivities (18, 62), these include, for exam-
ple, phononic band structures (19), heat transfer (21), diffusive
transport of photons (20), or the mechanical strength of metallic
foams (63–65).

The elastic properties of 3D networks based on foams, in par-
ticular the Weaire–Phelan foam, have been intensively studied
as exemplary cellular structures; e.g., see ref. 16. At low volume
fractions, the mechanical properties of the Kelvin foam, its bulk
and shear moduli, are almost isotropic (within a few percent) in
the small strain range (15, 17, 66). They are exactly isotropic for
circular cross sections and zero Poisson’s ratio (bulk material)
(15). At finite volume fractions, the shear moduli of the Kelvin
foam are more anisotropic than those of the Weaire–Phelan and
C15 foams (16). The average shear moduli are comparable, but
the TCP foams are perceptibly stiffer (16). The Young’s moduli
have been reported to be more isotropic for the Kelvin than for
the Weaire–Phelan network (67).

Further intriguing insights were gained for the effective foam
conductivity, both in the dry limit (2, 18, 62) and at higher vol-
ume fractions (68, 69). Starting from the Lemlich formula (62),
Durand et al. (18) found sufficient criteria to maximize the con-
ductivity of a network for a given topology: straight edges and
a balancing of the incident directions at each vertex. The latter
condition is guaranteed for dry foam by Plateau’s laws. Devi-
ations from a maximal conductivity are due to curved edges
only. Computing the orientational averaged conductivities of the
Kelvin, C15, and Weaire–Phelan foam, Durand et al. (18) found
them to be nearly optimal, as expected.

Materials and Methods
Classic Photonic Crystals. We compared the photonic foam networks to 4
classic photonic crystals: diamond, hexagonal diamond, Laves, and simple
cubic networks. Hexagonal diamond is also known as Lonsdaleite and closely
related to the Wurtzite crystal. The Laves graph (70) is also known as K4
graph (41) or SRS net (71). Its symmetric embedding in Euclidean space is
the medial axis of the gyroid, which is a triply periodic minimal surface (71).
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The diamond and simple cubic network also represent the medial axis of 2
other triply periodic minimal surfaces.

The photonic band structures of the 4 networks are shown in SI Appendix,
Figs. S2–S5. Time-averaged electric-field energy densities in a mode of the
band just below the gap (sometimes called the HDB‡) are depicted together
with small portions of the 3D networks. All energy densities are presented
in Movies S5–S8.

Precise Foam Approximants. We follow the now common procedure to start
with a weighted Voronoi diagram as a progenitor tessellation with flat
faces. Keeping the volumes fixed, we minimize the interfacial area using
the Surface Evolver (47). The conjugate gradient method is subsequently
turned on and off between iterations and refinements of the triangulation.
To obtain the network of foam cell edges, edges of triangles are selected
according to their valency. For exact parameters and configurations, see
Access to Code and Data.

Creating and Analyzing Phoamtonic Networks. To evaluate the photonic
band structure of photonic networks, we used the open-source soft-
ware MPB (50). In each network, the radius of the edges (i.e., sphero-
cylinders) is constant. We show the gap–midgap ratio as a function
of the radius in Fig. 5 (Right) and SI Appendix, Fig. S6. In all other
cases, we optimized the radius to obtain a maximal gap size either by
using the function maximize based on Brent’s algorithm of the LIBCTL
library [which in turn is used in MPB (50)] or by manually scanning a
range of radii (in particular at low dielectric contrast), as documented in
Database S3 (53).

The unit of length was chosen such that the number of vertices per
primitive unit cell is equal to its volume, resulting in midgap frequencies
ωm of about 0.3. The tolerance of the MPB eigensolver was 10−7, and
the mesh size that determines the smoothing of the values of the
dielectric constant was 5. The following parameters were used for the
high-precision band structures in Figs. 2–4 and Figs. S2–S5: The resolution of
the discretization was chosen so that the number of voxels per linear size
of each primitive unit cell was more than 70 for the phoamtonic networks,

‡ In contrast, the lowest air band is just above the gap.

about 60 for the diamond and Laves network, and 40 for the simple cubic
network. The frequency eigenvalues were evaluated at all high-symmetry
k-points of the irreducible Brillouin zone and at 8 intermediate points for
each chosen path between these k-points as indicated in the band struc-
ture plots. For the maps of gap sizes in Fig. 5, we chose a resolution
of 24 (number of voxels per unit length). The number of k-points varied
between the crystals as required. For precise values and data, see Access to
Code and Data.

Our conservative estimate of the systematic errors is smaller than 1%. The
main contributions are precision of optimization of the radii, discretization
effects, tolerance of the eigensolver, and the approximation of curved edges
via segments (decreasingly ordered). The statistical errors of the eigensolver
are negligible. Our conservative estimate of the absolute systematic error
of the anisotropy index A is O(0.1%), which is mainly caused by systematic
errors in the eigenfrequencies and a finite sampling density in the k-space
(SI Appendix).

Access to Code and Data. The software used in this study, MPB (50) and the
Surface Evolver (47), are publicly available on the websites of the projects.

All data generated or analyzed for this study, including configurations,
parameter files, raw output, and postprocessed data, are available at the
Zenodo repository (53).

Database S1 (53) contains all gap–midgap ratios shown in the maps of
gap sizes in Fig. 5 and SI Appendix, Fig. S6, together with the corresponding
rod radii, volume fractions, or dielectric contrast. The configurations of the
networks of edges in both the unrelaxed Voronoi diagrams and the relaxed
foams, as well as the classic crystalline photonic networks, are available in
Database S2 (53). Database S3 (53) contains all parameters of the photonic
calculations, raw output, and postprocessed data.
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