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Abstract
We study the pair correlations between prime numbers in an interval 
M � p � M + L with M → ∞, L/M → β > 0. By analyzing the structure 
factor, we prove, conditionally on the Hardy–Littlewood conjecture on 
prime pairs, that the primes are characterized by unanticipated multiscale 
order. Specifically, their limiting structure factor is that of a union of an 
infinite number of periodic systems and is characterized by a dense set of 
Dirac delta functions (Bragg peaks), similar to but different from the dense 
Bragg peaks that arise in quasicrystals and standard limit-periodic systems. 
Primes in dyadic intervals are the first examples of what we call effectively  
limit-periodic point configurations. This behavior implies anomalously 
suppressed density fluctuations compared to uncorrelated (Poisson) systems 
at large length scales, which is now known as hyperuniformity. Using a scalar 
order metric τ  calculated from the structure factor, we identify a transition 
between the order exhibited when L is comparable to M and the uncorrelated 
behavior when L is only logarithmic in M. Our analysis of the structure factor 
leads to an algorithm to reconstruct primes in a dyadic interval with high 
accuracy. The discovery of the hyperuniformity and effective limit-periodic 
behavior of the primes provide new organizing principles to understand the 
fundamental nature of patterns in the primes.
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1.  Introduction

While prime numbers are deterministic, by some probabilistic descriptors, they can be 
regarded as pseudo-random in nature. Indeed, the primes can be difficult to distinguish from 
a random configuration of the same density. For example, assuming a plausible conjecture, 
Gallagher proved that the gaps between primes follow a Poisson distribution [1]. Thus the 
number of M � X  such that there are exactly N primes in the interval M  <  p   <  M  +  L of 
length L ∼ λ lnX is given asymptotically by

# {M � X such that π(M + L)− π(M) = N} ∼ X
e−λλN

N!
.

Note that Gallagher’s interest was in short intervals whereas we analyze those in which the 
length L is comparable to the lower endpoint M. Our primary observation is that for these lon-
ger intervals, the primes are highly correlated and ordered on multiple length scales and hence 
are drastically different from a Poisson distribution. This is demonstrated by the identification 
of dense Bragg (Dirac delta function) peaks in the structure factor of the primes and by large 
values of the order parameter τ , both of which we define in section 2. In particular, we use the 
structure factor to detect a large-scale order known as hyperuniformity [2], very different from 
the uncorrelated behavior one sees in short intervals.

To study different ranges of primes, it is important to take account of the fact that primes 
become increasingly sparse in longer intervals. Let π(x) denote the prime counting function, 
which gives the number of primes less than x. According to the prime number theorem [3], the 
prime counting function in the large-x asymptotic limit is given by

π(x) ∼ x
ln(x)

(x → ∞).� (1)

The prime number theorem means that for sufficiently large x, the probability that a randomly 
selected integer not greater than x is prime is very close to 1/ ln(x), which can be viewed as a 
position-dependent number density ρ(x) (number of primes up to x divided by the interval x). 
This implies that the primes become sparser as x increases and hence constitute a statistically 
inhomogeneous set of points that are located on a subset of the odd integers (for any prime 
number greater than 2). This simple observation requires that one carefully choose the interval 
over which the primes are sampled and characterized in order to obtain meaningful results that 
in general will depend on the chosen interval. If L is much larger than M, the density 1/ ln(x) 
drops off appreciably as x ranges from M to M  +  L, and then the system is the very opposite 
of hyperuniform. On the other hand, ln(M + L) = ln(M) + ln(1 + L/M) is asymptotic to 
ln(M) as long as L/M is bounded above. In this case, one can treat the primes as homogeneous 
with constant density 1/ ln(M). For this paper, we take L ∼ βM of the same order as M or 
sometimes smaller to compare with Gallagher’s regime.

The plausible conjecture Gallagher assumed is a version of the Hardy–Littlewood m-tuples 
conjecture (theorem X1, p 61 of [4]). If H = (h1, . . . , hm) is a m-tuple of integers, then the 
conjecture gives the number of n � X such that all of the shifts n + h1, . . . , n + hm are prime as

# {n � X such that n + hj all prime} ∼ S(H)
X

(lnX)m ,� (2)
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where

S(H) =
∏

p

(
1 − 1

p

)−m (
1 − νH( p)

p

)
� (3)

νH( p) = # {distinct hj mod p} .� (4)

When m  =  1, say H = {h1}, (2) simply counts primes less than X (or, strictly, less than 
X  −  h1). In (3), since every ν( p) is 1, one has S(H) = 1. Thus the case m  =  1 is the prime 
number theorem, and it is the only one so far to be proved. Gallagher used all values of m in 
order to compare the empirical moments of primes in short intervals with the moments of the 
Poisson distribution.

Our study of the structure factor ultimately leads to an equivalent formulation of the case 
m  =  2. The Hardy–Littlewood constant S(H) can be understood as a correction to the predic-
tion one would make by imagining that all of the shifts n  +  hj  are prime independently with 
probability 1/ ln(X); see [5] and, for this and other senses in which the random model fails [6]. 
To summarize the interpretation, note that, for each p , (1  −  1/p )m is the naive chance that each 
of the shifts would be indivisible by p . However, these constraints are not independent, and 
νH( p) is exactly the number of residue classes modulo p  which n must avoid or else one of the 
numbers n  +  hj  would have p  as a factor. Thus S(H) cancels the incorrect guess (1  −  1/p )m 
and replaces it with the correct ( p − ν(H))/p. The argument advanced by Hardy–Littlewood 
is however of an altogether different nature, which we outline in the supplementary mat
erial for purposes of comparison for the interested reader (stacks.iop.org/JPhysA/52/135002/
mmedia).

Probabilistic methods to treat the primes have yielded fruitful insights about them [7]. 
Furthermore, there are computationally quick stochastic ways to find large primes [8–12]. On 
the other hand, it is known that primes contain unusual patterns, and hence their distribution 
is not purely random. Chebyshev observed (circa 1853) that primes congruent to 3 modulo 4 
seem to predominate over those congruent to 1. Assuming a generalized Riemann hypothesis, 
Rubinstein and Sarnak [13] exactly characterized this phenomenon and more general related 
results. A computational study on the Goldbach conjecture demonstrates a connection based 
on a modulo 3 geometry between the set of even integers and the set of primes [14]. In 1934, 
Vinogradov proved that every sufficiently large odd integer is the sum of three primes [15]. 
This method has been extended to cover many other types of patterns [16–19]. Recently it has 
been shown that there are infinitely many pairs of primes with some finite gap [20] and that 
primes with decimal expansion ending in 1 are less likely to be followed by another prime 
ending in 1 [21]. There is numerical evidence for patterns in the distribution of gaps between 
primes when these are divided into congruence families [22–24].

The present paper is motivated by certain remarkable global properties of the nontrivial 
zeros of the Riemann zeta function ζ(s), which is a function of a complex variable s that is 
intimately related to the primes. The zeta function has many different representations, one of 
which is the well-known series formula

ζ(s) =
∞∑

n=1

1
ns ,� (5)

which converges for Re(s) > 1. However, ζ(s) has a unique analytic continuation to the entire 
complex plane, excluding the simple pole at s  =  1. According to the Riemann hypothesis, the 
nontrivial zeros of the zeta function lie along the critical line s = 1/2 + it  with t ∈ R in the 
complex plane and hence form a one-dimensional point process. The nontrivial zeros tend 
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to get denser the higher on the critical line. When the spacings of the zeros are appropriately 
normalized so that they can be treated as a homogeneous point process at unity density in 
R , the resulting pair correlation function g2(r) (equal to g2(−r)) takes on the simple form 
1 − sin2(πr)/(πr)2 [25], where r ≡ |r|. This has consequences for the distribution of the 
primes in short intervals [26]. The corresponding structure factor S(k) in R  (essentially the 
Fourier transform of g2(r)) is given by

S(k) =
{ k

2π , 0 � k � 2π
1, k > 2π,

� (6)

where k = |k| is the wavenumber (modulus of the wavevector k) and S(k) = S(−k). 
Remarkably, formula (6) exactly matches the structure factor of the eigenvalues of a random 
matrix in the Gaussian unitary ensemble [27–29]; see figure 1. We see that the structure factor 
goes to zero linearly in k as the wavenumber goes to zero and is equal to unity for k > 2π. 
This implies that the normalized Riemann zeros possess an unusual type of correlated disorder 
at large length scales known as hyperuniformity [2, 30]. A hyperuniform point configuration 
in d-dimensional Euclidean space Rd is one in which S(k) tends to zero as the wavenum-
ber k tends to zero [2]. In such systems, density fluctuations are anomalously suppressed at 
very large length scales, a ‘hidden’ order that imposes strong global structural constraints. 
All structurally perfect crystals and quasicrystals are hyperuniform, but typical disordered 
many-particle systems, including gases, liquids, and glasses, are not. Disordered hyperuni-
form many-particle systems are exotic states of amorphous matter that have attracted consid-
erable recent attention [30–43].

Because information about the primes can in principle be deduced from information about 
the nontrivial zeros of the zeta function via explicit formulas [44–46], one might expect the 
primes to encode hyperuniform correlations seen in the Riemann zeros. For example, von 
Mangoldt’s explicit formula for a weighted counting function ψ(x) =

∑
pn<x ln( p) is given 

by

ψ(x) = x −
∑

s

x1/2+iγ

1
2 + iγ

− 1
2
ln(1 − x−2)− ln(2π),� (7)

0 2 4 6 8 10 12
k
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S
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Figure 1.  Structure factor of the normalized nontrivial zeros of the Riemann zeta 
function as a function of the wavenumber (see (6)). This falls in a special class of 
hyperuniform point configurations [30] called class II [43].
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for x  >  1 and x not a prime or prime power (where ψ(x) would have a jump discontinu-
ity). Here, 1/2 + iγ  denotes a nontrivial zero of ζ(s), meaning that it lies in the critical strip 
0 < Re(s) < 1. Assuming the Riemann hypothesis, γ  is real and the zeros thus form a one-
dimensional point process. In any case, allowing for complex γ , the explicit formula applies 
unconditionally. The trivial zeros −2,−4,−6, . . . contribute ln(1 − x−2). The explicit formula 
may be thought of as a Mellin transform of the prime numbers. The structure factor S(k), 
which is the basis of our investigation, is also a Fourier-type transform of the primes (without 
any weights) but in a more direct sense:

S(k) =
1
N

∣∣∣∣∣
∑

p

e−ikp

∣∣∣∣∣
2

,� (8)

where p  runs over the primes in the interval [M, M + L], the number of which we denote by N. 
A weighted version of the inner sum, which weights each prime p  and also its higher powers 
p l by ln p, has been much studied in connection with the circle method (see section 25 of [44], 
for example). The behavior of S(k) for small values of k reflects the large-scale correlations 
between primes.

In a very recent numerical study [47], two of us and Martelli adapted a physics-based 
approach by examining the pair statistics of the primes, especially the structure factor S(k), in 
an interval M � p � M + L with M and L large such that L/M is a positive constant smaller 
than unity. The simulations strongly suggest that the structure factor exhibits many well-
defined Dirac-delta-function (Bragg-like) peaks along with a small ‘diffuse’ contribution; see 
figure 2. This means that the primes are characterized by a substantial amount of order on 
many length scales, especially relative to the uncorrelated lattice gas (i.e. Poisson distribution 
of points on the integer lattice) that does not have any such peaks; see section 2 for a precise 
definition.

Motivated by this numerical study, we apply the the classical methods of Hardy and 
Littlewood [4] as well as Vinogradov [15] to understand rigorously the nature of the primes 
as a point process by ascertaining the structure factor, scaled by the density, in a distinguished 
limit, namely, prime numbers in an interval M � p � M + L with M → ∞, L → ∞ such that 
L/M is fixed and positive. We prove that the limiting structure factor is characterized by a dense 
set of Dirac delta functions (pure point diffraction pattern without any diffuse part); see propo-
sition 1 (equation (44)) and associated corollary (equation (51)). We also show that the corre
sponding pair correlation function is equivalent to the Hardy–Littlewood m-tuples conjecture 
with m  =  2 [4]. Our limiting form for the structure factor vividly elucidates the fact that the 
primes are characterized by a previously unknown high degree of order across all length scales 
similar to but different from quasicrystals or limit-periodic systems. Primes in dyadic inter-
vals are the first examples of what we call effectively limit-periodic point configurations. This 
discovery and analysis applied to the local number variance enables us to determine that the 
primes in such intervals are indeed hyperuniform (see proposition 2 in section 5), which is a 
new observation. Employing a scalar order metric τ  that depends on S(k), we identify a trans
ition between ordered and disordered prime regimes that depends on the intervals studied; see 
proposition 3 in section 6. While some of the major results were announced in a Letter [48], 
few mathematical details and derivations were presented there. Here such details are provided 
and we also report results that are not contained in [48], including an analysis of the number 
variance and hyperuniformity of the limit-periodic period-doubling chain, demonstration of 
the hyperuniformity of the primes, analyses of the scaling of the order metric τ  with L as well 
as the value distribution of S(k) of the primes, and a description of an algorithm to reconstruct 
accurately prime-number configurations.

S Torquato et alJ. Phys. A: Math. Theor. 52 (2019) 135002
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In section 2, we provide relevant definitions. In section 3, we analyze the period-doubling 
chain, a simple example of a point process with dense Bragg peaks (Dirac delta function) that 
illustrates the phenomenon of limit-periodicity, which we will see applies in a modified form 
to the primes. In section 4, we show that the structure factor defined in (8) is characterized by 
sharp peaks at certain rational multiples π, which become progressively denser as M increases, 
and negligibly small elsewhere. These results are summarized in proposition 1, a corre
sponding corollary, and a hypothesis. Assuming the Hardy–Littlewood conjecture, we prove 
that the primes within certain intervals in a distinguished limit are effectively limit-periodic. 
In section 5, we show that, in the infinite-size limit, the primes in a dyadic interval form a 
hyperuniform point process of class II (see proposition 2). This involves the aforementioned 
structure factor as well as a cumulative version of it, defined by (23), and the number variance 
σ2(R) associated with a ‘window’ of length 2R. In section 6, we employ a scalar order metric 
τ , derived from the structure factor, to determine how τ  scales with the system size L (see 
proposition 3) and to identify a transition between large values of τ , when L is comparable to 
M, and small τ  in Gallagher’s uncorrelated regime, where L is only logarithmic in M. In sec-
tion 7, we summarize the classification of the primes as a certain limit-periodic, hyperuniform 
point process. In section 8, we describe further numerical investigations into the size of the 
structure factor S(k). In section 9, we discuss the possibility of reconstructing the primes from 
the limit-periodic form of the inner sum in equation (8). In section 10, we summarize and 
discuss our conclusions.

2.  Definitions

We treat and analyze prime number configurations as point processes and then use a variety of 
descriptors commonly employed in statistical mechanics to spatially characterize them. In this 
regard, the ensuing definitions are particularly relevant to the remainder of the paper.

Figure 2.  The structure factor S(k) of the prime numbers for M  =  1010  +  1 and L  =  105 
obtained in a separate numerical study [47] in which the lattice spacing is assumed 
to be two (because it is a subset of the odd integer lattice). It is seen that it contains 
many well-defined Dirac-delta-function like (Bragg-like) peaks of various intensities 
characterized by a type of self-similarity. Included in the figure is the corresponding 
structure factor for the uncorrelated lattice (Poisson) gas at the same density on the 
integer lattice, whose intensities are barely perceptible on the scale of this figure, except 
for the trivial Bragg peak at k  =  0 (forward scattering not shown) and associated Bragg 
peaks that occur at wavenumbers that are multiples of π.

S Torquato et alJ. Phys. A: Math. Theor. 52 (2019) 135002
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A stochastic point process in a set X is a collection of points with configurational positions 
x1, x2, x3 . . . whose distribution is described by a probability measure on the set of all possible 
collections. Each configuration in X satisfies two regularity conditions: (i) there are no multi-
ple points (xi �= xj if i �= j) and (ii) each bounded subset of X must contain only a finite number 
of points. Here, we mainly restrict ourselves to one-dimensional point processes. The set X 
can be one-dimensional Euclidean space R  (continuum systems), discrete systems (e.g. the 
integer lattice Z), the one-dimensional torus T, or discrete systems on T. The latter two cases 
constitute periodic point processes. A particular configuration (realization) of a point process 
in X can formally be characterized by the random variable

η(r) =
∑
i=1

δ(r − xi)� (9)

called the ‘local’ density at position r, where δ(r) is a d-dimensional Dirac delta function. 
Two particularly important averages are the one-particle and two-particle correlation func-
tions, ρ1(r1) and ρ2(r1, r2), respectively. When X is Rd (continuous systems), they are defined 
as follows:

ρ1(r1) = 〈η(r1)〉,� (10)

ρ2(r1, r2) = 〈η(r1)η(r2)〉 − ρ1(r1)δ(r1 − r2),� (11)

where the angular brackets denote an average with respect to the probability measure. The 
random setting when X is R  is perfectly general and includes lattices and periodic point pro-
cesses as special cases. A lattice in R  (or in Rd) is a subgroup consisting of the integer linear 
combinations of vectors that constitute a basis for R  (or Rd). In a lattice in Rd, the space can be 
geometrically divided into identical regions called fundamental cells, each of which contains 
just one point. In one dimension, there is only one lattice, namely, the integer lattice Z. The 
dual of the integer lattice with fundamental-cell spacing a is an integer lattice with spacing 
2π/a, which we denote by Z∗. A one-dimensional periodic point process (crystal) in R  (points 
in T) is obtained by placing a fixed configuration of N points (where N � 1) within a funda-
mental cell F  of the integer lattice, which is then periodically replicated.

In the special case of statistically homogeneous point processes in R , all of the correlation 
functions are translationally invariant, the first two of which are then simply given by

ρ1(r1) = ρ,� (12)

ρ2(r1, r2) = ρ2g2(r2 − r1).� (13)

Here the constant ρ  is the number density (number of points per unit volume) and 
g2(r) = g2(−r) is the pair correlation function. It is useful to introduce the total correlation 
function h(r), which is related to the pair correlation function via

h(r) ≡ g2(r)− 1� (14)

and decays to zero for large |r| in the absence of long-range order. Note that h(r) = 0 for all r 
for the translationally invariant Poisson point process.

The structure factor S(k) in Rd is defined as follows:

S(k) = 1 + ρh̃(k),� (15)

where

f̃ (k) =
∫

Rd
f (r) exp [−i(k · r)] dr� (16)

S Torquato et alJ. Phys. A: Math. Theor. 52 (2019) 135002
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is the Fourier transform of a function f (r) so that

f (r) =
1

(2π)d

∫

Rd
f̃ (k) exp [i(k · r)] dk.� (17)

It follows that the structure factor is always symmetric with respect to the origin, i.e. 
S(k) = S(−k). Therefore, in one dimension, one can focus on S(k) (where k = |k|), which 
conveys complete information about the structure factor. We note that the structure factor 
S(k) is an important quantity in physics because it can be measured experimentally by x-ray 
or neutron scattering. Its behavior near k = 0 is directly linked to the hyperuniformity of the 
point process, as we will detail below. While S(k) is a nontrivial function for spatially cor-
related point processes, it is identically equal to one for all k for a translationally invariant 
Poisson point process.

In general, the structure factor of a statistically homogeneous point process can uniquely be 
decomposed into three contributions [49]:

S(k) = S(k)pp + S(k)sc + S(k)ac,� (18)

where S(k)pp is the ‘pure point’ (Dirac-delta masses) part, S(k)sc is the singular-continuous 
part, and S(k)ac is the absolutely-continuous part. In the case of the integer lattice, S(k) only 
consists of the pure-point part. The same is true for a one-dimensional quasicrystal, such 
as the Fibonacci chain that is characterized by the golden ratio, except here the Dirac-delta 
functions are dense [50]. The Fibonacci chain is a special case of one-dimensional patterns 
constructed from substitution rules involving algebraic numbers, and limit-periodic chains are 
closely related patterns but are characterized by rational numbers [49]. One-dimensional point 
sets generated from substitution rules involving non-Pisot numbers will consist only of singu-
lar-continuous contributions [51]. In the case of a Poisson point process, the only contribution 
to the structure factor is the absolutely continuous part. In stark contrast, we will show that the 
primes in certain intervals are dominated by a set of dense Bragg peaks.

The following definitions are employed to show the hyperuniformity of the period-doubling 
chain in section 3 and the primes in section 5. A hyperuniform statistically homogeneous point 
process in d-dimensional Euclidean space Rd is one in which the structure factor S(k) tends to 
zero as the wavenumber k ≡ |k| tends to zero, i.e.

lim
|k|→0

S(k) = 0,� (19)

implying that single scattering of incident radiation at infinite wavelengths is completely sup-
pressed. This class of point configurations includes perfect crystals, a large class of perfect 
quasicrystals [33, 52] and special disordered many-particle systems. Observe that the struc-
ture-factor definition (15) and the hyperuniformity requirement (19) dictate that the volume 
integral of ρh(r) over all space is exactly equal to  −1, i.e.

ρ

∫

Rd
h(r)dr = −1,� (20)

which is a direct-space sum rule that a hyperuniform point process must obey. The hyper-
uniformity property can be stated in terms of the the local number variance σ2(R) associ-
ated within an interval (window) of length 2R for a one-dimensional homogeneous point 
process [2]:

S Torquato et alJ. Phys. A: Math. Theor. 52 (2019) 135002
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σ2(R) = ρ2R
[
1 + ρ

∫

R
h(r)α2(r; R)dr

]

=
ρR
π

∫

R
S(k)α̃2(k; R)dk,

� (21)

where α(r; R) = 1 − r/(2R) for r � 2R and zero otherwise (where r ≡ |r|), and 
α̃(k; R) = 2 sin2(kR)/(kR). A hyperuniform point process is one in which σ2(R) grows more 
slowly than R in the large-R limit. Three classes of hyperuniformity are to be distinguished: 
class I, where σ2(R) is bounded; class II, where σ2(R) is logarithmic in R; and class III, where 
σ2(R) scales as a power R1−α with 0 < α < 1 (or d − α for a d-dimensional system) [43]. 
After integrating by parts, the second line of (21) leads to an alternative representation of the 
number variance [52]:

σ2(R) = − ρR
(π)

∫ ∞

0
Z(k)

∂α̃2(k; R)
∂k

dk,� (22)

where

Z(K) = 2
∫ K

0
S(k)dk� (23)

is the integrated or cumulative intensity function within a ‘sphere’ of radius K of the origin 
in reciprocal space. The quantity Z(k) has advantages over S(k) in the characterization of 
quasicrystals and other point processes with dense Bragg peaks [52]. If S(k) tends to zero as a 
power kα, then its integral Z(K) will tend to zero as a power one higher, Z(K) ∼ Kα+1. Any 
positive power α > 0 yields hyperuniformity and distinguishes the system from a random 
configuration of Poisson points with the same density.

When X is discrete, such as the integer lattice, it is sometimes convenient to use the same 
notation as equations  (9)–(13) such that δ(r − xi) is interpreted to be the Kronecker delta 
δr,xi , which means that η(r) takes either the value 0 or 1, depending on whether the site r ∈ X  
is unoccupied (empty) or occupied. In the special case of statistically homogeneous point 
processes, while the definition (14) remains the same, relations (12) and (13) are modified as 
follows:

ρ1(r1) = f ,� (24)

ρ2(r1, r2) = f 2g2(r2 − r1),� (25)

where f  is the occupation fraction (fraction of occupied sites). Similarly, equation (15) for the 
structure factor becomes in the discrete setting

S(k) = 1 − f + f h̃(k),� (26)

where h̃(k) is the discrete Fourier transform

h̃(k) =
∑

r�=0,r∈X

h(r) exp [−i(k · r)] ,
� (27)

where h(r) = g2(r)− 1. Note that 1  −  f  is the structure factor of the uncorrelated lattice gas, 
which is a stochastic point process in X in which the occupation of each site is a constant prob-
ability f , independent of any other site. While the Fourier-space hyperuniformity condition for 
discrete X is still given by relation (19), the corresponding direct-space condition is
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∑
r�=0,r∈X

h(r) =
f − 1

f
.� (28)

The relation between the local number variance σ2(R) and the structure factor S(k) is 
unchanged from equation (21). It is noteworthy that the sum rule (28) is a condition for hype-
runiformity in the grand-canonical (open-system) ensemble in which the number of particles 
fluctuates around some average value; see [2] and [43] for details in the continuous-space set-
ting. For a system in which the number of particles is fixed, the sum rule still applies but it is 
satisfied whether the system is hyperuniform or not.

For a single periodic point configuration of N points within F, specified by its local density 
η(r) (see (9)), it is useful to introduce the complex collective density variable η̃(k), which is 
simply the Fourier transform of η(r), i.e.

η̃(k) =
N∑

j=1

exp(−ik · rj).� (29)

This quantity is directly linked to the scattering intensity S(k) defined as

S(k) = |η̃(k)|2

N
,� (30)

which is a nonnegative real function with inversion-symmetry, i.e.

S(k) = S(−k)� (31)

that obeys the bounds

0 � S(k) � N (k �= 0)� (32)

with S(0) = N . For a single periodic configuration with a finite number of N points within a 
fundamental cell F , the scattering intensity S(k) is identical to the structure factor S(k) (see 
(15)), except the latter excludes k = 0 (forward scattering). In general, whether they remain 
equal in the infinite-system limit depends on the ergodicity of the process, but this issue does 
not affect our analysis of the primes, and so we will simply take equation (8), which is equiva-
lent to equation (30), to be the definition of the structure factor. Importantly, the definition of 
hyperuniformity excludes the forward scattering contribution, which is implicit in (19).

To characterize quantitatively order in the primes in various intervals (section 6), we will 
determine a scalar positive order metric τ  that is capable of capturing the degree of transla-
tional order across length scales [38]. For a statistically homogeneous point process in Rd at 
number density ρ , it is defined by

τ ≡ 1
Dd

∫

Rd
[g2(r)− 1]2dr� (33)

=
1

(2π)dDd

∫

Rd
[S(k)− 1]2dk,� (34)

where D is some characteristic length scale. A convenient choice is D = ρ−1/d . For a Poisson 
point process in Rd, τ = 0 because g2(r)− 1 is zero for all r. Thus, a deviation of τ  from zero 
measures translational order with respect to the fully uncorrelated case. For example, for the 
Riemann zeta zeros, τ = 2/3, assuming Montgomery’s pair correlation conjecture or, equiva-
lently, the corresponding structure factor (6), which reflects the disordered hyperuniformity of 
the point process. For any periodic point process in which there are a finite number of points 
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within the fundamental cell F , τ  is unbounded because the integrals are carried out over all 
space. For this reason, one can employ a modified version of τ  by carrying out the integral in 
direct space or reciprocal space over appropriate subsets of Rd, in which case the equality in 
equation (34) no longer applies.

The discrete-setting counterpart of the order metric τ  defined in (34) in which X is a sub-
set of Z on the torus T in which the fundamental cell has length L with lattice spacing a is 
given by

τ ≡
Ns−1∑
j=1

f 2[g2(aj)− 1]2� (35)

=
1
Ns

Ns−1∑
j=1

(
S
(

2πj
L

)
− (1 − f )

)2

,� (36)

where Ns is the number of lattice sites within the fundamental cell (equal to L/a) and N is the 
number of occupied sites. Strictly speaking, the quantities g2(r) and S(k) are ensemble aver-
ages but, practically, g2(r) and S(k) can also be interpreted to come from a single but large 
configuration. In the case of an uncorrelated lattice gas, S  =  1  −  f  in the infinite-system-size 
limit so that τ = 0. The corresponding expression in the discrete setting for a single configura-
tion in any space dimension was presented and applied in [53]. Analysis of the primes in some 
fixed interval requires the use of this single-configuration variant of τ , which we will employ. 
Note that τ  for a single configuration of an uncorrelated lattice gas is given by (1  −  f )2 (not 
zero) in the infinite-system-size limit.

3.  An illustrative example: the period-doubling chain

The spatial distribution of the primes shares some features with limit-periodic point sets, and 
so we analyze an example of such a point configuration, the period-doubling chain, in detail. 
Consider two types of intervals (‘tiles’ or ‘letters’): a and b. The period-doubling chain is defined 
by the following iterative substitution rule: a → ab and b → aa [49]. Starting from an initial seed 
a, one obtains a ‘one-sided’ chain sequence a, ab, abaa, abaaabab, abaaabababaaabaa, . . . . 
Henceforth, we assume that the chain extends to positive and negative values in R  about the 
origin (i.e. a ‘double-seed’ a|a is taken to be the initial condition) in order be consistent with 
the definitions of the functions presented in section 2 and employed below. In the infinite-size 
limit, this constitutes a point process on Z in which a subset of sites are occupied by a’s and 
the remaining sites are occupied by b’s. The locations of the b’s are given by a superposition 
of arithmetic progressions 2  +  4j , 8  +  16j , 32  +  64j , ⋯, with a factor of four from one to the 
next. Thus the infinite-size limit is a union of periodic systems, which is termed limit-periodic. 
The limiting densities of a and b sites are 2/3 and 1/3, respectively. The structure factor associ-
ated with the a’s, as obtained from (30), is given by

S(k) =
4π
3

( ∞∑
m=1

δ(k − 2πm) +

∞∑
n=1

∞∑
m=1

2−2nδ

(
k − (2m − 1)π

2n−1

))
� (37)

assuming unit lattice spacing. This is obtained by squaring equation (12) in [49], multiply-
ing it by 2π/f , and then rescaling the function by 2π. The factor 2π accounts for differences 
in the definition of the Fourier transform. Thus, we have a dense set of Dirac-delta-function 
peaks, one for each dyadic rational (2m  −  1)/2n−1; see figure 3. These peaks at certain rational 
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numbers arbitrarily close to zero are a feature shared by this example and the prime numbers. 
Figure 3 depicts the structure factor of the period-doubling chain.

Substitution of this expression (37) for the structure factor into relation (21) yields the local 
number variance for the period-doubling chain:

σ2(R) =
8

9π2

( ∞∑
m=1

sin2(2mπR)
m2 +

∞∑
n=1

∞∑
m=1

sin2((2m − 1)πR/2n−1)

(2m − 1)2

)
.� (38)

The first term in (38) is a periodic function R(1 − 2R)/9 with period 1/2 and the second 
term is a superposition of periodized ‘triangle’ functions with heights 1/9 and bases 1, 2, 4, 
⋯.. Together this results in a number variance that grows logarithmically in R; see figure 4. 
Therefore, the period-doubling chain is hyperuniform of class II [43].

Having established that the period-doubling chain is hyperuniform, we now want to deter-
mine how the structure factor S(k) behaves in the vicinity of the origin. The structure factor 
S(k) is not a continuous function because there are dense Bragg peaks arbitrarily close to 0, 
so we do not have S(k) → 0 as k → 0 in the usual sense. We follow the practice of [52] in 
such instances and pass to a cumulative version of the structure factor, Z(K), defined by (23). 
This integral simply adds the weights of the δ peaks up to position K. In order to have a peak 
(2m − 1)π/2n−1 within the range of integration, n must be relatively large:

∃m
2m − 1

2n−1 π〈K ⇐⇒ 2n−1〉π/K ⇐⇒ n > log2(π/K) + 1 = log2(2π/K),
� (39)

or else there are no integers m in the necessary interval. We have an explicit formula for the 
tail of a geometric series:

∑
n>C

bn = b�C� 1
1 − b� (40)

where �C� denotes the least integer greater than C (and, in particular, C  +  1 in case C is 
already an integer). Using this to sum the series in Z(K) leads to an explicit formula

Figure 3.  Structure factor of the period-doubling chain as obtained from formula (3) in 
which the second sum is truncated at n  =  20. Note the self-similarity in the intensities 
and locations of the peaks. The height of the peak at k = π is larger than shown on the 
scale of this figure.
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Z(K) = 2
∫ K

0
S(k)dk =

8π
3

∑
n>log2(2π/K)

2−2n
⌊

1
2
+ 2n−2 K

π

⌋

=
8π
3

∑
n>log2(2π/K)

2−2n
(

1
2
+ 2n−2 K

π
+

{
1
2
+ 2n−2 K

π

})

=
8π
3


4

3
2−2�log2(2π/K)� +

1
2

K
π

2−�log2(2π/K)� +
∑

n>log2(2π/K)

2−2n
{

1
2
+ 2n−2 K

π

}


� (41)

where the braces {·} denote fractional part. (Note that the first term in expression (37) for the 
structure factor makes no contribution to Z(K) for small K.) Taking into account the jump 
discontinuities when K/π crosses a dyadic rational shows that

1
6π

K2 � Z(K) �
1

2π
K2.� (42)

Figure 5 shows the function Z(k) and the aforementioned upper and lower bounds.
Thus Z(K) is bounded between two multiples of K2, with a self-similar staircase-like behav-

ior in between. Using these bounds and relation (22), we get the following corresponding 
asymptotic bounds on the number variance σ2(R) in the limit R → ∞:

4
9π2 ln(R) � σ2(R) �

4
3π2 ln(R).� (43)

This implies that the period-doubling chain falls within class II of hyperuniform systems with 
a structure factor that effectively behaves as S(k) ∼ k  as k → 0 [43]. These asymptotic bounds 
substituted in the number variance expression (22) closely match the upper and lower enve-
lopes (not shown) of the fluctuating number variance function plotted in figure 4.

4.  Structure factor of the primes in a distinguished scaling limit

We theoretically study the structure factor S(k) of the primes in an interval [M, M + L] and 
consider β ≡ L/M to be fixed such that M  +  L is within a constant multiple of M, and thus 
the prime number theorem implies that the density ρ  is effectively 1/ ln(M) throughout the 
interval. We show that the structure factor of the primes in a distinguished limit such that 

1 1000 1e+06 1e+09
R

0

0.5

1

1.5

2

2.5

3

σ2 (R
)

Figure 4.  Local number variance of the period-doubling chain as computed from the 
explicit formula (38) in which the second sum is truncated at n  =  20.
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M → ∞, β > 0 and after scaling by the density ρ , exhibit peaks that will consist only of 
Dirac delta functions at rational numbers with odd, square-free denominators, and hence the 
small diffuse part observed numerically in [47], vanishes in this limit. To do so, we rely on the 
Hardy–Littlewood circle method [4], but applied to the structure factor, with some modifica-
tions. This hypothesis is described by the following proposition:

Proposition 1.  Contingent on the Hardy–Littlewood conjecture, the structure factor of the 
prime numbers, scaled by the the density ρ , in an interval M � p � M + L in the limit such 
that M → ∞, L/M → β > 0 is given by

lim
M→∞

S(k)
2πρ

=
∑

n∈Z+

�∑
m∈Z

× 1
φ(n)2 δ

(
k − mπ

n

)
,� (44)

where φ(n) is Euler’s totient, which counts the numbers up to n with no factor in common with 
n [45], the symbol � indicates that the sum over n only involves odd, square-free values of n 
and the symbol × indicates that m and n have no common factor.

In what follows, we give a derivation of (44), which is contingent on the Hardy–Littlewood 
conjecture (2) with m  =  2. Our approach is different from the original procedure of Hardy 
and Littlewood and benefits from significant improvements due to Vinogradov [15]. Here we 
note that Hardy and Littewood begin with a generating function f (x) that is a sum is over all 
primes, not just those in a finite interval. By contrast, because we want to make contact with 
the modern concept of hyperuniformity, we begin with the structure factor S(k) for primes in 
a finite interval [M, M + L]. Moreover, we pass to the aforementioned scaling limit, which is 
not done in usual treatments. For example, in applications like Vinogradov’s proof that every 
large odd number is a sum of three primes, it is important to have a finite version of the peaks 
with the sum over n in (44) truncated. Passing to the limit in proposition 1 loses some of this 
information, which is one of the reasons why previous formulations do not state results in 
terms of Dirac delta functions in the way we do. On the other hand, taking this limit is very 
important from the point of view of establishing the hyperuniformity of the primes (proposi-
tion 2 of section 5). It also leads us to ask different questions and obtain new insights. For 
example, it enables us to quantify the degree of order in the primes (proposition 3 of section 6) 
as a function of L and M and allows the first classification of the primes in the aforementioned 
scaling limit as effectively limit-periodic point process (section 7).

2 4 6
k

2

4

6

Z
(k

)

Z(k)

k
2
/2π

k
2
/6π

Figure 5.  The cumulative intensity function Z(k) of the period-doubling chain as 
obtained from formula (41) in which the second sum is truncated at n  =  20. The upper 
and lower bounds given in (42) are also indicated in the figure.
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4.1.  Derivation of proposition 1

Our starting point is the Fourier-space-based structure factor, which is different from the 
direct-space generating function f (x) that Hardy and Littlewood employed in their celebrated 
paper [4]; see also the outline of their approach and commentary in the supplementary mat
erial. Our first step is to replace the complex density variable η̃(k) (see (29)) by another sum 
involving more convenient weights, namely, the von Mangoldt function Λ(n), which is given 
by ln( p) when n is a power of the prime p , and zero otherwise. To do so, we use the following 
identity [44]:

∑
X<p<Y

eiαp =
1

ln(Y)

∑
p<Y

eiαp ln( p)− 1
ln(X)

∑
p<X

eiαp ln( p) + O
(

Y − X
ln(X)3

)

� (45)
for X � Y . We may include powers of primes p k weighted by ln( p) at little extra cost, which 
simplifies certain estimates. This enables us to write the collective density variable in the 
interval [M, M + L] as

η̃(k) ≡
∑

M<p�M+L

e−ikp =
1

ln(M)

M+L∑
n=M+1

Λ(n)e−iαn + O
(

L
ln(M)2

)
.� (46)

The corresponding expression for the structure factor follows immediately from (46) and defi-
nition (8), but we scale this result by 2πρ , arriving at the result

1
2πρ

S(k) =
1

2πL

∣∣∣∣∣
M+L∑

n=M+1

Λ(n)e−ikn

∣∣∣∣∣
2

+ O
(
L/ ln(M)2),� (47)

where, to bound the error, we used the trivial bound 
∑

Λ(n)eiαn � L , and remind the reader 
that ρ ∼ 1/ ln(M) and N ∼ ρL.

We now apply the circle method of Hardy and Littlewood, but to the sum (47) for the struc-
ture factor. We split the interval into major arcs M(q, a) = {|α− a/q| < ε} near fractions a/q 
with small denominator q, and the rest of the interval (minor arcs), denoted by m. The denomi-
nator is restricted to q � qmax and we choose qmax = ln(L)B, with a constant B as large as one 
pleases. The length ε of each major arc is chosen to be ε = ln(L)B/L.

Let us first calculate the contribution from the major arcs M(q, a) to formula (46) for the 
collective density variable η̃(k), returning later to the discussion of the minor arcs. On the 
major arc M(q, a), even without the Riemann hypothesis, we still have the following approx
imation for

ln(M)η̃(k) ≈ µ(q)
φ(q)

M+L∑
n=M+1

e−i(k−2πa/q)n + O
(
Le−c

√
L).� (48)

This plays the role of Hardy–Littlewood’s approximation to f (x) in lemma 9 of [4]; see also 
[44] and [54]. They take M  =  1 but one can of course subtract. We summarize the argument 
from [44] in appendix for the reader’s benefit in order to emphasize the role played by primes 
in arithmetic progression; see also [48]. Now we employ the elementary identity

∣∣∣∣∣
M+L∑

n=M+1

e−int

∣∣∣∣∣
2

=
1 − cos(2πtL)
1 − cos(2πt)

=

(
sin(πLt)
sin(πt)

)2

,� (49)
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which immediately follows from summation of the geometric series. Note that ec
√

ln(L) is 
much larger than ln(L)b = eb ln ln L  for any positive values of a and b. Thus the errors from 
using the prime number theorem are smaller than the error L/ ln(M)2 that we have already 
exposed ourselves to in (47).

Therefore, the structure factor, which is given by |η̃(k)|/N  (see (30)), in the vicinity of a 
particular peak location k for some a and q and sufficiently small t is given by

1
2πρ

S(k) =
µ(q)2

φ(q)2

1
2πL

(
sin(πLt)
sin(πt)

)2

+ O
(
L/ ln(M)2),� (50)

where we have used (48) and (49). The following corollary immediately follows from (50).

Corollary.  For finite but large N, the structure factor at certain rational values of k/π is 
given approximately by

S(πm/n) ≈ N
(
µ(2n)
φ(2n)

)2

,� (51)

where µ(n) is the Möbius function defined so that µ2(2n) is one whenever 2n is square-free 
and zero otherwise, and note that φ(n) = φ(2n) if n is odd. The corresponding representation 
of the structure factor as a finite sum that accounts for multiple peaks is given by

S(k) ≈
∑

3�n�nmax

� ∑
1�m�n−1

×
N
(
µ(2n)
φ(2n)

)2

δk,mπ/n,� (52)

where the sum over n is truncated at n = nmax and δx,y is the Kronecker delta.

Remark 1.  Referring to (50), we see that in the limit that t tends to zero faster than L goes 
to infinity, and M → ∞ such that L/M remains finite, this formula yields Dirac delta functions 
at rational locations described in the corollary. However, in order to arrive at the limiting form 
(44) of proposition 1, we must show that the structure factor is negligibly small at the irration-
als in the infinite-system-size limit, which is a highly nontrivial task. To do so, we rely on the 
following hypothesis.

Hypothesis.  For a general continuous, periodic function F(x), we have

∫ 1

0
F(α)

1
L

∣∣∣∣∣
M+L∑

n=M+1

enαΛ(n)

∣∣∣∣∣
2

dα ≈
∑

q

∑
a

µ(q)2

φ(q)2 F(a/q).� (53)

We now provide strong theoretical arguments, even if far short of rigorous proof, to support 
this hypothesis. By Fejér’s theorem for a periodic function Fx), we have uniform convergence:

1
2π

∫ π

−π

F(x − t)
1
L

(
sin(Lt/2)
sin(t/2)

)2

dt → F(x)� (54)

as L → ∞. Assuming ε is not too small, the bulk of the integral comes from |t| < ε. Indeed,
∫ 1−ε

ε

F(a/q + t)
1
L

(
sin(πLt)
sin(πt)

)2

dt �
2‖F‖∞

L

∫ 1/2

ε

dt
sin(πt)2 =

2‖f‖∞
Lπ

cot(πε) �
‖F‖∞

Lε
.
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This implies that the integral over M(q, a) converges to F(a/q) as L → ∞, provided Lε → ∞. 
This is the case, for example, with our choice ε = log(L)B/L for any power B. Note that

1
L

∫ 1

0

(
sin(πLt)
sin(πt)

)2

dt = 1.

This allows us to write
∫ 1

0
F(a/q + t)

1
L

(
sin(πLt)
sin(πt)

)2

dt = F(a/q) +
∫ 1

0

(
F(a/q + t)− F(a/q)

)( sin(πLt)
sin(πt)

)2 1
L

dt

= F(a/q) +
∫ ε

−ε

(
F(a/q + t)− F(a/q)

)( sin(πLt)
sin(πt)

)2 1
L

dt + O
(
‖F‖∞

Lε

)
.

Suppose that F has modulus of continuity ω , meaning that |F(x)− F(y)| � ω(ε) whenever 
|x − y| � ε. For example, if F has continuous derivatives of order up to m, then ω(ε) = ‖F‖Cmεm 
is a valid modulus of continuity for F. Using once more the fact that the integral of the Fejér 
kernel is 1, we have

∫ 1

0
F(a/q + t)

1
L

(
sin(πLt)
sin(πt)

)2

dt = F(a/q) + O
(
ω(ε) +

‖F‖∞
Lε

)
.

Dividing the interval [0, 1] into the major arcs M(a, q) for q � qmax together with the remain-
ing minor arcs m, and summing the error made in Fejér’s theorem over q � qmax, we get

∫ 1

0
F(α)

1
L

∣∣∣∣∣
∑

X<n<Y

enαΛ(n)

∣∣∣∣∣
2

dα

=
∑

q

∑
a

×µ(q)2

φ(q)2 f
(a

q

)
+ O

((
ωF(ε) +

‖F‖∞
Lε

)
ln(qmax)

)
+

1
L

∫

m

F(α)

∣∣∣∣∣
∑

X<n<Y

enαΛ(n)

∣∣∣∣∣
2

dα.

We assume that F is smooth enough to have ωF(ε) ln(qmax) → 0, where   
ε = ln(L)B/L = qmax/L. For example, this is the case if F is C1 or even just Hölder continu-
ous with any exponent α, since εα ln(qmax) → 0. Likewise, ln(qmax)/Lε → 0. Therefore, 
assuming the integral over m is negligible yields (53) of the hypothesis.

Remark 2.  We stress that proving that the minor arcs contribute less than the major arcs 
is a significant challenge, which we have not solved. Nevertheless, the analysis above is very 
suggestive.

Now we apply equation (53) of the hypothesis to prime pairs by setting F(k) = eikr, yielding

1
2πρ

∫ π

0
F(k)S(k)dk ≈

∑
n∈Z+

� ∑
1�m�n−1

× 1
φ(n)2 F(πm/n),� (55)

where we have used (47). Expression (55) gives a count of how often p  and p   +  r are both 
prime for r �= 0. Collecting all of the results above and taking the limit of relation (50) so that 
t tends to zero faster than L goes to infinity, and M → ∞ such that L/M remains finite yields 
our hypothesized limiting form (44) of proposition 1.

Remark 3.  The interpretation of (44) in our hypothesis of proposition 1 is that S(k)/(2πρ) 
converges to the sum of peaks 

∑
n

∑
m φ(n)−2δ(k − πm/n) in the sense that their integrals 

against test functions F(k) are close. Note that the pure point diffraction form of the scaled 
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structure factor means that the ‘diffuse’ contribution seen in numerical experiments in finite 
intervals [47] vanishes in this distinguished limit.

Remark 4.  This normalized structure factor of the primes (44) exhibits dense Bragg peaks 
at certain rational values of k/π, and hence is similar to the structure factor (37) of the limit-
periodic period-doubling chain discussed in section 3, which heretofore was not observed. 
However, there is a fundamental difference between these two systems, to be elaborated in 
section 7.

Proposition 1 is also supported by our numerical results. Figure 6 compares the prediction 
of formula (52) for the structure factor of the primes for M  =  1010  +  1, L = 2.23 × 108 and 
nmax = 100 ln(M) to the corresponding numerical results reported in [47]. Agreement between 
the analytical and numerical results is excellent. The structure factor contains many well-
defined Bragg-like peaks of various intensities characterized by a type of self-similarity, exact 
in the limit M → ∞. This self-similar structure arises from the fact that φ(n1n2) = φ(n1)φ(n2) 
for relatively prime n1 and n2, so that rescaling preserves the relative heights of the peaks given 
by equation (44).

4.2.  Pair correlation function and equivalence to the Hardy–Littlewood conjecture

We now obtain the pair correlation function g2(r) of the primes via the limiting form of the 
structure factor (44) by performing the inverse Fourier transform of S(k)− 1 ≡ ρh̃(k) using 
(17), where h̃(k) is the Fourier transform of h(r) ≡ g2(r)− 1 for r �= 0:

g2(r) = 1 +
∑

n∈Z+

� 1
φ2(n)

∑
1�m�n−1

×
exp(rmπi/n).� (56)

Recall that the pair correlation function is defined such that fg2(r) gives the conditional prob-
ability that, assuming p  is prime, so is p   +  r. Because the density of the primes is 1/ ln(M), 

Figure 6.  Structure factor for the primes as a function of k (in units of the integer 
lattice spacing of 2) in the interval [M, M + L), as predicted from formula (51) for 
M  =  1010  +  1, L = 2.23 × 108 and nmax = 100 ln(M). This shows many peaks with 
a type of self-similarity described in the main body of the text and is seen to be in 
excellent agreement with the corresponding numerically computed structure factor 
obtained in [47].
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the occupation fraction is f = 2/ ln(M), and the density of prime pairs with separation r (see 
(13)) is

ρ(r) =
#{ p ∈ [M, M + L]; p, p + r prime}

L

=
f 2g2(r)

2

=
2

(lnM)2


1 +

∑
n∈Z+

� 1
φ2(n)

∑
1�m�n−1

×
exp(rmπi/n)


 .

�

(57)

From (2) and (57), we see that expression (56) for g2(r) for distinct values of r = 2, 4, 6, . . . 
is simply a different representation of the Hardy–Littlewood constant S(H), given by (3), 
for the case m  =  2 so that H = {0, r}. Thus, (44) implies the Hardy–Littlewood conjecture 
on prime pairs by taking the test function F(k) of (55) to be eikr . Conversely, if the Hardy–
Littlewood conjecture holds for every r, then one knows (44) for exponential functions eikr  and 
one can deduce it for other functions F(k) by Fourier expansion. The limiting form for S(k) is 
thus an equivalent formulation of the Hardy–Littlewood conjecture. As such, we certainly do 
not have a proof of it to offer here.

5.  Hyperuniformity

Proposition 2.  Assuming proposition 1, we prove that the primes in the infinite-system-size 
limit such that M → ∞, L/M → β > 0 form a hyperuniform point process of class II.

Proof.  As in the period-doubling chain, to determine whether the primes are hyperuniform, 
we first determine the cumulative intensity Z(K) defined by (23). Using this relation and as-
suming (44) from proposition 1, we find that this quantity satisfies

lim
M→∞

Z(K)

2πρ
= 2

∑
n

� ∑
πm

n <K

× 1
φ(n)2 .� (58)

The largest value of S(k) is N, whereas the weights in (44) lead to values N/φ(n)2 � N/n2. 
For these to be comparable to the maximum, a cutoff n �

√
1/c on the denominator is neces-

sary so that the peak values will be of the same order of magnitude as N. On the other hand, n 
must be large enough for there to be a peak position mπ/n less than K:

π

K
� n �

√
1
c
= nmax.� (59)

In particular, the lowest allowable K is π/nmax.
For the sum over m, note that for any v, and in particular for v = K/π ,

∑
m<vn

×
1 = vφ(n) + Oε(nε).� (60)

To see this, we use the Möbius inversion property, namely
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∑
d|t

µ(d) =
{

1 if t = 1
0 if t > 1� (61)

to detect the condition gcd(m, n) = 1. This implies that
∑

m<vn

×
1 =

∑
m<vn

∑
d| gcd(m,n)

µ(d) =
∑
d|n

∑
b<vn/d

µ(d) =
∑
d|n

µ(d)�vn/d�.

Now we write �vn/d� = vn/d − {vn/d} in terms of integer part and fractional part:
∑
d|n

µ(d)�vn/d� = v
∑
d|n

µ(d)
n
d
−

∑
d|n

µ(d){vn/d}.

The main term vφ(n) in (60) thus comes from the identity

φ(n) =
∑
d|n

µ(d)
n
d

.

The rest is negligible because |µ(d){vn/d}| � 1 and the number of divisors of n is asymptoti-
cally smaller than any power of n, denoted Oε(nε).

To a good approximation for sufficiently large M, this yields

Z(K) ≈ 4 K
ln(M)

∑
π
K <n<nmax

� 1
φ(n)

+ Oε


 1
ln(M)

∑
π
K <n<nmax

nε

φ(n)2


� (62)

≈ K
ln(M)

(
ln nmax − ln

π

K

)
+Oε


 1
ln(M)

∑
π
K <n<nmax

nε

φ(n)2


.� (63)

Recall that there is a lower bound on K: K � π/nmax . Expanding the function Z(K) in (63) 
around this value, note that

ln nmax − ln
π

K
∼ nmax

π

(
K − π/nmax

) (
1 − nmax

π

(
K − π/nmax

))
.

If we take nmax to be of order ln(M) and K close to π/nmax, then the first term as K → 0 is 
approximately

K
ln(M)

(
ln nmax − ln

π

K

)
∼ 1

ln(M)
K
(

Knmax

π
− 1

)
.

To bound the second term in (63), note that

∑
n

nε

φ(n)2 �
∫ nmax

π/K
x−2+εdx � (π/K)−2+ε − n−2+ε

max .

The binomial theorem implies that

(π/K)−2+ε − n−2+ε
max =

(
K
π

)2−ε (
1 − (Knmax/π)

−2+ε
)
� K2−ε(Knmax/π − 1).
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By our choices nmax ∼ ln(M) and K/π ∼ n−1
max , we have 1/ ln(M) ≈ K. Since K  <  1, K2−ε is 

larger than K/ ln(M) ∼ K2, so it is the second term that dominates. We have

Z(K) �ε K2−ε
(
Knmax/π − 1

)
,

where the notation means Z(K) is close to a multiple of the quantity on the right, and this 
multiple may depend on ε. If we choose K/π so close to n−1

max that

Knmax/π = 1 + O(Kε),

then we obtain

Z(K) � K2.

This implies hyperuniformity, in the cumulative sense, and subject to this specific calibration 
of nmax and K.� □ 

Remark.  The result Z(K) ∼ K2 as K → 0 implies that the primes fall within class II of 
hyperuniform systems with a structure factor S(k) that effectively is linear in k as k → 0 [43], 
so that the number variance σ2(R) scales logarithmically with R in the large-R limit.

Figure 7 depicts Z(K) for the primes as determined from the truncated version of (58) with 
nmax = 10 ln(M). It is seen that for small K, Z(K) is quadratic in K, as predicted.

6.  τ  order metric

We now study the order metric τ  in the discrete setting (see (36)) as a function of the system 
size L for the primes and the integer lattice.

Proposition 3.  Assuming (51) of the corollary of proposition 1, we prove that the order 
metric τ  of the primes as a function of the system size L in the considered interval [M, M + L] 
(when divided by ρ2) obeys the following scaling relation:

τ/ρ2 ∼ cL,� (64)

where c is some constant.

This dependence of τ  on L can be understood in terms of the peaks in the structure factor, 
given by (51), via the definition (36). We have

τ =
1
Ns

Ns−1∑
j=1

(S( jπ/Ns)− 1 + f )2 .� (65)

We have seen how to estimate S(πm/n) at a rational number in lowest terms: if the denomina-
tor is square-free, there will be a peak of height N/φ(n)2 while, if not, the structure factor will 
be very small. There could be a common factor between j  and Ns, so let

n =
Ns

gcd( j, Ns)
.� (66)

This makes j /Ns  =  m/n in lowest terms with numerator m = j/ gcd( j, Ns). Assume for sim-
plicity that Ns is square-free so that all of the resulting denominators n will be square-free. 
Then we have
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τ ∼ 1
Ns

∑
n|Ns

(
N

φ(n)2 − 1
)2

#{ j s.t. Ns/ gcd( j, Ns) = n}

∼ N2

Ns

∑
n|Ns

1
φ(n)4 φ(n)

∼ ρ2L
∑
n|Ns

1
φ(n)3 .

The fact that the last sum is convergent proves proposition 3. Alternatively, one could use 
expression (35) for τ  and substitute the value predicted by Hardy–Littlewood for g2(2j ).

In the case of the integer lattice, τ  can be calculated directly from its definition (36). Since 
of the Ns  −  1 terms in the sum in (36), 1/f   −  1 terms involve S(k) at Bragg peak locations, 
while the remaining terms involved S(k) values away from Bragg peaks, we have

τ =
1
Ns

[(
1
f
− 1

)
(N − 1 + f )2

+

(
Ns −

1
f

)
(0 − 1 + f )2

]
.� (67)

For sufficiently large systems, the contribution from the second term is negligible, and N is 
much larger than 1  −  f , yielding

τ ≈ 1
Ns

(
1
f
− 1

)
N2.� (68)

Plugging in Ns  =  L/2, f = 2ρ, and N = ρL, one gets

τ ≈ 2
L

(
1

2ρ
− 1

)
(ρL)2

= Lρ(1 − 2ρ),

which is consistent with equation (64) for the primes when the density is fixed.
We have numerically computed τ  for the primes and integer lattice by generating 

such configurations, sampling for their structure factors, and then computing their corre
sponding values of τ  using relation (36). For the primes, we take M ≈ 108, and therefore 
f = 2ρ ≈ 2/ ln(M) ≈ 0.11. For the integer lattice, we take f   =  0.1. The constant c is 18.00 for 
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Figure 7.  The cumulative intensity function Z(K) of the primes as obtained from the 
truncated version of (58).
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the integer lattice and 0.1674 for the primes. These results are plotted in figure 8. Notice that 
for a single configuration of an uncorrelated lattice-gas, τ  does not grow with L and converges 
in probability to a constant of order unity (see discussion under equation (36)). This means 
that the primes in these prescribed intervals are substantially more ordered than the uncorre-
lated lattice gas and appreciably less ordered than an integer lattice.

Now we study the τ  order metric of prime-number configurations with different M and 
L, obtained by computing their structure factors and evaluating (36). As figure 9 shows, the 
constant-τ  level curves have the form L ∼ ln2(M), i.e. level curves appear as quadratic curves 
in the log plot depicted in figure 9. This follows from the fact that τ  is proportional to ρ2L, 
the density ρ  being given by the prime number theorem as 1/ ln(M). Thus, L ∼ ln2(M) is the 
boundary between regions where primes can be considered to be uncorrelated versus those 
where they exhibit correlations.

The regime L ∼ ln(M)2 marks another important dividing line. Consider the Cramér 
model where one replaces the number of primes from M to M  +  L by a sum of random vari-
ables taking the values 0 and 1 with probabilities chosen to match the prime number theorem. 
A sum of L such random variables will have fluctuations on the order of L1/2, by the Central 
Limit Theorem or by an elementary calculation, while the main term is L/ ln(M). Thus, at 
least for the random model, L ∼ ln(M)2 is a turning point between short intervals, where 
L/ ln(M)2 → 0 and the fluctuations overwhelm the prime number theorem, and longer inter-
vals, where L/ ln(M)2 → ∞ and the fluctuations can be neglected. Selberg [55], assuming 
the Riemann hypothesis, proved that for L/ ln(M)2 → ∞, the number of primes from M to 
M  +  L is L/ ln(M) as predicted by the prime number theorem, except possibly for a sparse 
sequence of exceptional values of M. One might guess that this holds without exception, but 
Maier proved that there are infinitely many such M [56]. For any power c  >  1, and setting 
L = ln(M)c, Maier proves

lim sup
M→∞

N
L/ ln(M)

> 1 > lim inf
M→∞

N
ln(M)

.� (69)

The behavior of primes in intervals of this length is thus a significant departure from the ran-
dom model. For the uncorrelated regime in which Gallagher’s results apply, L ∼ ln(M), and 
τ  will diminish as M increases. As L increases, prime-number configurations move from the 
uncorrelated regime (τ ∼ 1, L � ln2(M)) to the effective limit-periodic regime we studied in 
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Figure 8.  The order metric τ , defined in equation  (36), in the discrete setting as a 
function of the system size L for the primes and integer lattice with filling fraction 
f   =  0.1 obtained by direct simulations from equations (36) and (64).
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this paper (τ ∼ L, L ∝ M), and then to the inhomogeneous regime where the density gradient 
is no longer negligible (e.g. if L ∼ M1+ε and ε > 0.) In this last phase, the number variance 
σ2(R) grows faster than the window volume (i.e. faster than R), which is the diametric oppo-
site of hyperuniformity.

7.  Classification of the primes

Using equation (44), we have shown that the primes are like a limit-periodic point process, 
i.e. they are characterized by a structure factor S(k) with dense Bragg peaks at certain rational 
values of k/π derived from an infinite union of periodic systems in the limit as M → ∞ with 
L ∼ βM. This is similar to the structure factor of the limit-periodic systems; see section 3. 
However, the primes show an erratic pattern of occupied and unoccupied sites, very differ-
ent from the predictable and orderly patterns of standard limit–periodic systems. Hence, the 
primes represent the first example of a point process that is effectively limit-periodic. The 
reader is referred to [48] for a schematic that illustrates how primes in arithmetic progressions 
in sufficiently long intervals lead to a superposition of multiple effective periodicities and 
hence provides a qualitative explanation for the effective limit-periodic behavior of the primes 
encoded in the structure factor. Each periodicity corresponds to an arithmetic progression, and 
the primes in a sufficiently long interval compared to the modulus of the progression will show 
only lower-order deviations from periodicity. The superposition of these approximate peri-
ods provides a qualitative explanation for the effective limit-periodic behavior of the primes 
encoded in the structure factor. It is to be contrasted with the period-doubling chain, which is 
a superposition of exact periods.

We have also demonstrated that the primes are hyperuniform of class II. Interestingly, this 
is precisely the same hyperuniformity class to which the (normalized) zeros of the Riemann 
zeta function belong. However, the primes are substantially more ordered, having dense Bragg 
peaks instead of a continuous structure factor. As a result, one can only claim that S(k) → 0 in 
a cumulative sense, unlike the case of the zeros. While the Riemann zeros are disordered and 

Figure 9.  Natural logarithm of the order metric τ , defined in equation (36), of prime 
numbers for 10 < M < 2 × 1010 and 8 < L < 2 × 104 obtained from numerical 
simulations.
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hyperuniform, the primes are effectively limit-periodic and hence are characterized by order 
on all length scales. In terms of τ , the primes are substantially more ordered than the uncor-
related lattice gas and appreciably less ordered than an integer lattice, but similar in order to 
the period-doubling chain. It should not go unnoticed that the lack of multiscale order in the 
Riemann zeros is reflected in the fact that τ  is bounded in the large-L limit. Indeed, assum-
ing Montgomery’s pair correlation conjecture, it converges to the constant 2/3 (which in the 
continuous setting should be compared to τ = 0 for the Poisson point process; see discussion 
under equation (34)). This value 2/3 is what one finds by substituting the conjectured form for 
the structure factor (see figure 1) in the definition (34) of τ  in the continuous setting and inte-
grating (k/(2π)− 1)2 over 0 < k < 2π. In a system with multiscale order, such as the primes 
in dyadic intervals, τ  diverges with L.

The condition that L ∼ M , under which we have shown heretofore unanticipated order 
in the primes, is to be contrasted with the regime L ∼ ln(M), in which the primes follow 
Gallagher’s uncorrelated behavior. We have also shown that when L grows faster than M, the 
primes enter the inhomogeneous regime where the density gradient is no longer negligible and 
hence where the limit-periodicity breaks down.

8.  Value distribution of S(k)

In this section, we study how frequently the structure factor S(k) exceeds a given threshold t. 
Here, we apply (8) and let

λ(t) =
1
π
|{0 � k � π; S(k) > t}|� (70)

be the measure of the set where S(k) > t, relative to the total length of the interval 0 < k < π. 
We think of λ(t) as a cumulative distribution function (CDF). The quantity λ(t) depends on 
M, not only t, but we suppress this dependence in the notation. There is also a related quantity 
which measures how often S(k) > t while excluding forward scattering:

λ−(t) =
∣∣∣∣
{

2π
L

< k < π − 2π
L

; S(k) > t
}∣∣∣∣ .� (71)

We have

λ−(t) � λ(t) � λ−(t) + 2π/L,� (72)
so the difference between λ(t) and λ−(t) is negligible in the limit of large L. By orthogonality 
of the exponentials eikp, we have

∫ π

0
S(k)dk = π.� (73)

Since S(k) � 0, it follows that

π =

∫ π

0
S(k)dk �

∫

{S(k)>t}
S(k)dk � tπλ(t).� (74)

Thus we have an upper bound

λ(t) �
1
t

.� (75)
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For t  >  1, this is an improvement over the trivial bound λ(t) � 1. For small t, figure 10 suggests 
that λ(t) is close to e−ct for some c  >  0. If one imagines S(k) as a small, noisy contribution on 
top of the peaks in its limiting form, this suggests that the noise follows an exponential distri-
bution. On the other hand, figure 11 suggests that the upper bound (75) is the correct order of 
magnitude of λ(t) for large t. For t on the order of N, the only way to have S(k) > t is for k to 
be close to a peak. This leads to the ‘heavy-tailed’ power-law behavior illustrated in figure 11.

9.  Reconstruction of the primes

An interesting question is to what extent we can reconstruct prime configurations from our 
results in Fourier space? The structure factor is directly related to the modulus of the the 
complex collective density variable η̃(k) (see (30)) but not its phase. Hence, Fourier inversion 
of S(k) does not allow us to determine a unique translation of a particle configuration, since a 
translation of the entire configuration affects the phase of η̃(k) but not its modulus. In a recent 
work [57], both the modulus and phase of η̃(k) was used to reconstruct one-dimensional point 
configurations with small N in continuous space. Their algorithm was purposely designed to 
understand the nature of the inversion procedure for very small particle configurations. We 
require a different algorithm in order to treat the discrete nature of the odd integers and to 
reconstruct configurations with many primes.

Using (48), η̃(k) for the primes in a finite interval [M, M + L) is given by the following 
formula:

η̃(k) =
∑

M�p<M+L

exp(−ikp) ≈ 1
ln(M)

µ(q)
φ(q)

M+L∑
n=M+1

e−i(k−2πa/q)n,� (76)

which we can employ, in principle, to carry out the reconstruction. However, in practice, we 
do not use the right-most side of (76) for this purpose, since a summation over the entire inter-
val is computationally too time-consuming to calculate for large intervals. Instead, we obtain 
an approximation to η̃(k) using the following steps:

	 (i)	�Calculate N = (M + L)/ ln(M + L)− M/ ln(M). By the Prime Number Theorem, N is 
the approximate number of primes in this interval.
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Figure 10.  The measure λ(t) for relatively small range of values of the threshold t 
for several values of M. In all cases, L  =  0.1M. The curves for different values of M 
converges to an exponential curve well before the largest value of M  =  1010 is attained. 
The latter case is well described by the exponential exp(−1.779 89t).
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	(ii)	�Initialize η̃(k) at k = (2π)/L, 2(2π)/L, 3(2π)/L, · · · , (L − 1)(2π)/L  to be zero. Set 
η̃(0) = N . We will only need η̃(k) values at these discrete k points for the inverse Fourier 
transformation.

	(iii)	�As in equation (52) for the the structure factor of a finite system, we account for the peaks 
only at frequencies πm/n with n � nmax and find all odd square-free numbers for such n.

	(iv)	�For each n, find all integers m such that 0  <  m  <  n and m is co-prime with n.
	(v)	�For each n and m, we need to reconstruct a peak at k = mπ/n. For the purpose of recon-

structing this peak, the prime-number configuration can be treated as a periodic system of 
period 2n. Consider an odd integer x ∈ [M, M + L), the corresponding site may be occu-
pied only if gcd(x, n) = 1. Thus, if we divide the interval [M, M + L) into Nc = �L/(2n)� 
chunks of length 2n (plus a remainder of length L  −  2nNc if L is not divisible by 2n), 
each chunk contains φ(n) such allowed sites. Find the total number of such allowed sites, 
Na = φ(n)Nc + Nr, where Nr is the number of allowed sites in the remaining L/2  −  nNc 
sites. The occupation fraction of allowed sites is thus N/Na. Assuming equidistribution of 
primes on allowed sites (which is exact only in the infinite-size limit [48]), calculate the 
contribution to η̃(k) from the first chunk, i.e. first n sites:

C1 =
N
Na

∑
j

×
exp(−ikj),� (77)

		 where the index j  runs over odd integers from M to M  +  2n  −  2 such that gcd( j, n) = 1. 
The contribution from the j th chunk to η̃ is thus Cj = f j−1C1, where f = exp(−ik2n) is 
the phase change between the contribution from the first chunk and that from the second 
chunk. Similarly, also calculate the contribution η̃(k) from the remaining sites:

Cr =
N
Na

∑
j

×
exp(−ikj),� (78)

		 where the index j  runs over odd numbers from M  +  2nNc to M  +  L  −  2 such that 
gcd( j, n) = 1.

	(vi)	�Whereas the infinite-system limiting form of η̃ has perfect Dirac peaks, the actual peaks 
for finite L have width proportional to 1/L. The appropriate adjustment for this depends 
on whether L is divisible by n, since then a whole number of wavelengths pass from M 
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Figure 11.  The measure λ(t) for relatively large range of values of the threshold t for 
several values of M. In all cases, L  =  0.1M. Instead of the exponential curve found 
in the case shown in figure 10, here λ(t) obeys an inverse power law. The curve for 
M  =  1010 is well fit by the function 0.021 74/t, which we see satisfies the upper bound 
(75).
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to M  +  L. If L is divisible by n, then the peak affects η̃(k) at k = mπ/n, but not nearby k 
points. Moreover, in this case f   =  1 and Cr  =  0. We thus increase η̃(k) at k = mπ/n by

C1 + C1f + C1f 2 + · · ·+ C1f Nc−1 + Cr = NcC1.� (79)

		 However, if L is not divisible by n, then the peak also affects η̃(k) at all nearby k points. 
In this case f �= 1, and we increase η̃(k) of affected k points by

C1 + C1f + C1f 2 + · · ·+ C1f Nc−1 + Cr = C1

(
1 − f Nc

1 − f

)
+ Cr.� (80)

		 The increment of η̃(k) at nearby k points is truncated when the result from equation (80) 
is smaller than α

√
N. In practice, we use α = 1.

	(vii)	�Perform an inverse Fourier transform of η̃(k) to find η(r).

If we had a completely accurate prediction of η̃(k), the resulting local density η(r) would be 
exactly one for each prime number and exactly zero for each composite number. The pre-
dicted η̃(k) is not completely accurate. A major reason for the inaccuracy is that there should 
be infinitely many peaks, but we only consider a finite number of peaks for which n < nmax. 
Another inaccuracy comes from assuming that primes are uniformly distributed in all allowed 
sites, which is not exact for finite L. Therefore, the resulting η(r) is not exactly zero or one. We 
find N numbers with the highest predicted η(r) and predict those numbers to be prime. Thus 
another source of error is that we always predict N primes, whereas the true number of primes 
may be more or less than the estimate from the prime number theorem.

We have performed such reconstructions for L = 510 510 and several different M’s and 
nmax’s. Let Nc be the number of correctly predicted primes, Ni be the number of incorrect pre-
dictions, and Nu be the number of un-predicted primes in this interval. We define the following 
ratios involving these quantities to measure the accuracy of the reconstruction procedure:

t1 =
Nc

Ni
,� (81)

t2 =
Nc

Nu
.� (82)

These two ratios versus nmax are plotted in figure 12. We see that for smaller M’s and larger 
nmax’s, this reconstruction procedure is highly accurate. When M  =  106 and nmax = 2000, 
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Figure 12.  Two measures of the accuracy of the predicted prime numbers, t1 and t2, 
defined by (81) and (82), respectively, versus nmax.
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more than 99% of the predicted prime numbers turn out to be correct. Unfortunately, as M 
increases, the accuracy declines. For any M, increasing nmax improves the accuracy, but with 
additional computational cost.

Another measure of the prediction accuracy is the probability of correctly predicting the 
primality of any site (any odd integer), which is tabulated in table 1 for L = 510 510 and vari-
ous values of nmax and M. Consistent with the results reported for t1 and t2, we see that the 
accuracy improves for any M as nmax increases, ranging from 93% to about 99% accuracy as 
M decreases.

We emphasize that an nmax of order lnM already yields nontrivial results. To find primes 
between M and 2M naively by trial division, one would need to know the primes up to 

√
M , 

much larger than our logarithmic nmax. The fact that the first lnM primes are enough to pre-
dict primes in the long and distant interval from M to 2M, even imperfectly, is an interesting 
form of long-range order. Bertrand famously postulated that there is always a prime number 
between M and 2M, for any value of M. This was proved by Chebyshev using his explicit 
bounds towards the prime number theorem, but it remains a difficult algorithmic problem to 
find primes between M and 2M quickly when M is large. Our reconstruction procedure does 
give an algorithm to do so. However, this is not a polynomial-time algorithm. The reason is 
that the Fast Fourier Transform scales linearithmically in the number of sites L, whereas the 
goal would be complexity polynomial in ln(L). Step (iii) involves testing whether each num-

ber up to nmax is square-free, which up to logarithmic factors takes O(n3/2
max) steps (unless we 

had a faster way to test square-free than using trial division up to 
√

n to factor n). Step (iv) 
takes O(n2

max) steps, again up to logarithmic factors, using the Euclidean algorithm to find 
greatest common divisors quickly. Step (v) entails computing a sum of length n to find C1 for 
each peak. This step takes O(n2

max + N) operations. In step (vi), we have to check for the cut-
off in updating η̃(k) values for each peak, which involves O(n2

max) cases. If nmax is negligible 
compared to N, then (vii) is the slowest step, where we perform the inverse Fourier transform 
of η̃(k). This step scales as O(L ln L). Thus, at a computational cost of L ln L operations, we 
reconstruct the primes with imperfect accuracy. One could reconstruct with perfect accuracy 
by simply testing whether each of the L numbers in the interval is prime. Each primality test 
takes at most on the order of ln(M)6 operations for AKS as adapted by Lenstra and Pomerance 

Table 1.  Percent accuracy for the prime-number reconstruction process for 
L = 510 510 for various values of M and nmax. Here percent accuracy is defined as 
(Ns − Ni − Nu)/Ns, i.e. the number of correct predictions that a site is either prime or 
composite divided by the total number of sites.

M nmax Percent accuracy

106 500 0.942
1000 0.979
2000 0.987

107 500 0.919
1000 0.940
2000 0.967

108 500 0.912
1000 0.925
2000 0.941

109 500 0.911
1000 0.920
2000 0.931

S Torquato et alJ. Phys. A: Math. Theor. 52 (2019) 135002



30

[58], or ln(M)4 assuming the Riemann hypothesis to run a deterministic Miller–Rabin test  
[8, 9]. Thus our method sacrifices accuracy in exchange for a running time faster by ln(L)3.

It is interesting to note that when our reconstruction algorithm incorrectly predicts a 
composite number as prime, the composite number is usually ‘almost prime’ in the sense 
that all of its prime factors are large. For example, our algorithm incorrectly predicted 
1000 733 = 809 × 1237 and 1001 423 = 887 × 1129 as primes.

10.  Conclusions and discussion

The prime numbers display a range of behaviors depending on the interval under consider-
ation. For dyadic intervals [M, M + L] with L comparable to M, we have found order across 
length scales, very different from the seeming randomness on display for smaller L. However, 
if L were much larger than M, then one would reach the opposite conclusion of a non-hype-
runiform system, purely because of the density gradient without reference to further proper-
ties specific to the primes. The substantial order is reflected by the existence of dense Bragg 
peaks, a consequence of the effective limit-periodicity. The order metric τ  gives a quantitative 
sense in which the primes are substantially more ordered than the uncorrelated lattice gas but 
less ordered than an integer lattice. When L decreases, τ  for the primes in this shorter interval 
becomes closer to that of an uncorrelated system with a transition visible at L ∼ ln(M)2. But 
the primes in dyadic intervals are hyperuniform, a fact which would seem almost unbelievable 
without the effective limit-periodic form for the structure factor; see equation (44). Indeed, 
the primes fall within the same broad hyperuniformity class as the Riemann zeta zeros (see 
figure  1), but are substantially more ordered, having dense Bragg peaks instead of a con-
tinuous structure factor so that, unlike the Riemann zeros, the order metric τ  grows with L. 
These peaks are located at rational wavenumbers πm/n with odd, square-free denominator n, 
and were discovered numerically in [47]. They are explained in terms of the approximately 
equal distribution of prime numbers across residue classes modulo 2n. Assuming the Hardy–
Littlewood conjecture on prime pairs, the small ‘diffuse part’ observed numerically in [47] is 
negligible in the infinite-system limit. The dense peaks exhibited by the primes are a feature 
shared with some recently studied quasicrystals, some also in class II and others with even 
smaller density fluctuations, but these other examples have peaks located at irrational wave-
numbers [52]. The primes are distinctive in being a superposition of periodic systems subject 
to irregularities in the distribution of occupied sites, which we call effective limit-periodicity.

The effective limit-periodic form of the structure factor allows one to predict the Hardy–
Littlewood constants for the frequency with which p  and p   +  r are both prime. Of course, it 
remains an open problem to prove a lower bound establishing that there are infinitely many 
twin primes. As a more tractable open problem, we ask what further patterns can be found by 
considering three-particle and higher statistics, beyond what we could discern from the two-
particle statistics S(k) and τ . This is related to the full Hardy–Littlewood k-tuples conjecture, 
going beyond the case of k  =  2 considered here.

Since our analytical formula for the complex density variable η̃(k), defined by (29), con-
tains phase information, one can employ it to reconstruct a prime-number configuration within 
an interval [M, M + L] with L ∝ M  by obtaining the inverse Fourier transform of η̃(k). This 
leads to an algorithm that enables the reconstruction of the primes in such intervals with high 
accuracy provided that nmax is sufficiently large and M is not too large.
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Appendix.  Primes in progressions

The basic idea is to decompose with respect to Dirichlet characters modulo q. These are func-
tions χ(n) defined for integer values of n and characterized by the properties of periodicity 
and multiplicativity, namely χ(n + q) = χ(n) and χ(ab) = χ(a)χ(b). They are the natural 
harmonics to use in a situation with period q that preserves multiplicative structure, such as 
remainders after division by q. One character χ0 is distinguished, given by χ0(n) = 1 for 
gcd(n, q) = 1 and χ0(n) = 0 in case gcd(n, q) > 1. As a rule of thumb, χ0 provides the main 
term and we must endeavor to show that the contributions from other characters χ are neg-
ligible. The phase of ean/q can be expanded as a sum over Dirichlet characters χ modulo q. 
Assuming gcd(an, q) = 1, we have

ean/q =
1

φ(q)

∑
χ

G(χ)χ(ap).� (A.1)

The sum is over all Dirichlet characters modulo q. If gcd(an, q) > 1, then the sum is 0. We 
recommend [44] for the theory of Dirichlet characters as well as the Gauss sum G(χ). By 
definition,

G(χ) =

q∑
m=1

χ(m)e2πim/q,� (A.2)

and it is important to note that |G(χ)| � q1/2 while G(χ0) = µ(q) is the Möbius function. 
Since n is a prime power and a has no factor in common with q, gcd(an, q) = 1 does hold 
unless n is a power of a prime dividing q. Factoring q as q = p1p2 · · · pw � 2w  shows that 
there are at most ln(q) primes dividing q. For each such p , a prime power n  =  p l will be less 
than M  +  L for l � ln(M). In our range, with a value of qmax much less than M, we thus have 
gcd(an, q) = 1 except for at most ln(M)2 terms n. With an error no worse than a power of 
ln(M), we may thus ignore these exceptions, proceeding as if (A.1) held for all n. Writing 
α = k/π = a/q + t and summing over n gives

M+L∑
n=M+1

eαnΛ(n) =
1

φ(q)

∑
χ

τ(χ)χ(a)
M+L∑

n=M+1

entχ(n)Λ(n).� (A.3)

Summing by parts, we have

∑
n�Y

entχ(n)Λ(n) = eYtψ(Y ,χ)− 2πit
∫ Y

1
eutψ(u,χ)du,� (A.4)

where, for an upper limit u and a character χ to modulus q,

ψ(u,χ) =
∑
n<u

Λ(n)χ(n).� (A.5)
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By the prime number theorem in progressions (p 125, 132 of [44]), there is a positive c  >  0 

such that for all characters to moduli q � ln(L)B , ψ(u,χ0) = u + O
(
exp(−c

√
ln(u))

)
 while 

for nontrivial χ, ψ(u,χ) = O
(
exp(−c

√
ln(u))

)
. This leads to the error term stated in (48) 

(and the Riemann hypothesis would imply an estimate for an even larger range of q).
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