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Disordered hyperuniform dispersions are exotic amorphous two-phase materials characterized by an
anomalous suppression of long-wavelength volume-fraction fluctuations, which endows them with
novel physical properties. While such unusual materials have received considerable attention, a stum-
bling block has been an inability to create large samples that are truly hyperuniform due to current
computational and experimental limitations. To overcome such barriers, we introduce a new and simple
construction procedure that guarantees perfect hyperuniformity for very large sample sizes. This
methodology involves tessellating space into cells and then inserting a particle into each cell such that
the local-cell particle packing fractions are identical to the global packing fraction. We analytically prove
that such dispersions are perfectly hyperuniform in the infinite-sample-size limit. Our methodology
enables a remarkable mapping that converts a very large nonhyperuniform disordered dispersion into a
perfectly hyperuniform one, which we numerically demonstrate in two and three dimensions. A similar
analysis also establishes the hyperuniformity of the famous Hashin-Shtrikman multiscale dispersions,
which possess optimal transport and elastic properties. Our hyperuniform designs can be readily
fabricated using modern photolithographic and 3D printing technologies. The exploration of the enor-
mous class of hyperuniform dispersions that can be designed and tuned by our tessellation-based
methodology paves the way for accelerating the discovery of novel hyperuniform materials.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Disordered hyperuniformmaterials [1e3] are exotic amorphous
states of matter that are like crystals in the manner in which their
large-scale density fluctuations are anomalously suppressed and
yet behave like liquids or glasses in that they are statistically
isotropic without any Bragg peaks. Recent results offer glimpses
into the remarkable physical properties that such unusual corre-
lated disordered materials can possess, including complete
isotropic photonic/phononic band gaps [4e6], nearly optimal
transport and mechanical properties [7e9], and dense but trans-
parent materials [10].

The hyperuniformity concept was first introduced in the context
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of point patterns [1] and later extended to two-phase systems [2,3],
such as composites, colloidal suspensions, and polymer blends
[11e15]. A hyperuniform two-phase material is one in which the
local volume-fraction variance s2V ðRÞ inside a spherical observation
window of radius R decays faster than R�d for large R, which is the
scaling for typical disordered systems. In the strongest form of
hyperuniformity, called “class I,” the large-R scaling of the variance
is s2V ðRÞ � R�ðdþ1Þ [2,3]. Equivalently, its spectral density function
~cV ðkÞ, obtainable from scattering experiments [16], vanishes as the
wavenumber jkj tends to zero [2,3], and hence hyperuniform sys-
tems encompass all periodic and special disordered systems.

To date, a variety of disordered hyperuniform systems have been
identified, including classical equilibrium systems [17e22], quan-
tum systems [23e25], maximally random jammed packings
[26e28], non-equilibrium critical states [29,30], non-equilibrium
dynamical systems [31], random speckle patterns [32], number
theory [20,33e35], and biological systems [36e39]; see also a
recent review [3] and references therein. While some of these
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systems [17e25,34,35] are proved to be perfectly hyperuniform in
the infinite-sample-size limit, others are effectively hyperuniform,
i.e., ~cV ð0Þ is not exactly zero but small compared to the peak value
of the spectral density [3,40]. Although effective hyperuniformity is
sufficient to exhibit desirable physical properties, it has been
shown that driving systems into perfect hyperuniformity will
further improve their performance [41,42].

Importantly, hyperuniformity is a property of infinitely large
systems, which implies that one needs an arbitrarily large sample to
ascertain whether the system is perfectly hyperuniform. However,
current experimental [27,30,43,44] and computational
[22,40,45e48] methods are limited in their capacity to create
perfectly hyperuniformmaterialse increasing sample size comes at
the expense of perfect hyperuniformity leading to effective hyper-
uniformity at best. For instance, while the collective-coordinate
optimization technique [7,8,17] ensures the generation of perfectly
hyperuniform disordered many-particle systems, even at finite
wavelengths, its computational cost grows rapidlywith sample size.
Furthermore, hyperuniformitycanbedegradedordestroyed (even if
by a small amount) due to the inevitable presence of imperfections
in otherwise perfectly hyperuniform systems [40,49].

Hence, there is a great need to devise systematic procedures to
construct extremely large realizations of perfectly hyperuniform
disordered two-phase systems, which would ensure the best
property performance. To achieve this goal, we introduce a new
tessellation-based procedure that ensures the creation of perfectly
hyperuniform dispersions in two and three dimensions for any
sample size, including the infinite-sample-size limit.

We begin by stating preliminary definitions and computational
methods (see Sec. 2). Then, we introduce a tessellation-based
procedure to construct disordered hyperuniform dispersions, i.e.,
two-phase systems in which hard (nonoverlapping) “particles” are
spatially distributed throughout a connected “matrix” phase. This
procedure is a new and special type of packing protocol that is
different from previously known techniques [50]. We first describe
this procedure and then prove that such constructions produce
perfectly hyperuniform dispersions in the infinite-sample-size
limit (see Sec. 3). As a proof-of-concept, we numerically verify
our analytical results by constructing hyperuniform dispersions
from two types of initial tessellations: Voronoi tessellations (see
Sec. 4) and multiscale-sphere tessellations (see Sec. 5). The former
case provides a remarkable mapping that converts a very large
nonhyperuniform packing (at least as large as 107 particles) to a
hyperuniform dispersion. The latter case enables us to establish for
the first time the hyperuniformity of the famous optimal multiscale
coated-spheres model. The challenging numerical task of con-
structing such disordered multiscale dispersions is carried out and
their hyperuniformity is verified. Finally, we demonstrate how such
a capability can be combined with state-of-the-art 2D photolitho-
graphic [51] and 3D printing techniques [52e54] to design and
fabricate very large disordered hyperuniformmaterials (see Sec. 6).
We make concluding remarks in Sec. 7.

2. Preliminaries and computational methods

2.1. Spectral density

The microstructure of a two-phase system is often described by
two-point correlation function SðiÞ2 ðrÞ that measures the probability
that two points separated by r are simultaneously located in phase
i. The autocovariance function is defined as

cV ðrÞ≡SðiÞ2 ðrÞ � f2
i ; (1)
which is identical for each phase, and tends to zero as r increases
when the system is in the absence of long-range order [13]. Its
Fourier transform ~cV ðkÞ at a wavevector k is called the spectral
density and is a nonnegative real-valued function of k. Importantly,
the spectral density is directly measurable from elastic scattering
experiments [16].

Consider a sphere-packing in a periodic simulation boxV d in d-
dimensional Euclidean space ℝd, which consists of N spheres of
different radii R1; R2;/; RN . Its spectral density can be written as
[13,55,56].

~cV ðkÞ ¼
1

jV dj
�

������
XN
j¼1

~m
���k;Rj���e�ik$rj � f

ð
V d

dr0e�ik$r0

������
2 (2)

where f is the packing fraction and jV dj is the volume of a
simulation box. Here, ~mðk;RÞ ¼ ð2pR=kÞd=2Jd=2ðkRÞ represents the
Fourier transform of a sphere of radius R, JnðxÞ is the Bessel function
of order n, L is side length of the unit cell, and a wavevector
k≡2p

L ðn1;n2;/;ndÞ corresponds to the reciprocal lattice vectors of
the unit cell.

In numerical simulations, Eq. (2) can be simplified as follows:

~cV ðkÞ ¼
1

jV dj

������
XN
j¼1

~m
���k;Rj���e�ik$rj

������
2

; (3)

using the fact that the space integral in Eq. (2) effectively vanishes
at every nonzero wavevector. We note that Eqs. (2) and (3) cannot
be applied to overlapping spherical particles. For an ensemble of
multiple packings, the spectral density is computed by averaging
spectral densities of individual packings, and the associated errors
are estimated from the sample standard deviations. The angular-
averaged spectral density, of central concern in this paper, is
computed by averaging the spectral densities at wavevectors
whose magnitudes are in the same bin, and error bars in the
wavenumbers represent the standard deviations.
2.2. Classes of hyperuniform two-phase systems

For disordered hyperuniform two-phase systems, the spectral
density ~cV ðkÞ frequently exhibits power-law scaling behavior in the
small wavenumber limit:

~cV ðkÞ � jkja ðjkj/0Þ: (4)

Values of the positive exponent a define three classes of
hyperuniformity associated with the large-R behaviors of local
volume-fraction variance [2,3,57]:

s2V ðRÞ �
8<
:

R�ðdþ1Þ; a>1 ðClass IÞ
R�ðdþ1Þ ln R; a ¼ 1 ðClass IIÞ
R�ðdþaÞ; a<1 ðClass IIIÞ

;

where class I is the strongest form of hyperuniformity.
2.3. Random sequential addition (RSA) procedure

RSA is a time-dependent process that irreversibly, randomly,
and sequentially places nonoverlapping spheres into space [13,58].
In its infinite-time limit, the resulting packing becomes saturated
(i.e., there is no available space to add other particles) and yet
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nonhyperuniform [59].We generate exactly saturated RSA packings
in a finite amount of time by using the voxel-list algorithm,
developed by Zhang and Torquato [59].

2.4. Voronoi tessellations

For a point pattern, the Voronoi cell associated with a given
point is the region of space closer to this point than to any other
points, and the Voronoi tessellation is the collection of all Voronoi
cells [13]. While Voronoi tessellations can be naturally generalized
to Laguerre [60,61] and Manhattan [62] distances, in this work we
focus on Euclidean distances.

We compute the Voronoi tessellation of a given point pattern by
the VOROþþ library [63]. To improve the computational time, we
divide a point pattern into several d-dimensional hypercubic do-
mains with overlapping marginal regions whose thickness is 6a,
where a≡r�1=d; see Fig. 1 in Supplementary Material. Then, Voronoi
tessellations of individual domains are computed in parallel. Here,
we note that in 2D implementations, the particle number in each
domain should be smaller than 105 to avoid any possible memory
leakage, which may occur because the VOROþþ library is designed
for 3D Voronoi tessellations.

2.5. Simulated sphere tessellations

A sphere tessellation is a partition of space (ℝd) by nonover-
lapping spheres with a polydispersity in size down to the infini-
tesimally small. Such multiscale-sphere tessellations are infinitely
degenerate with varying degrees of order/disorder. The most or-
dered ones would be derived from lattice packings or certain
deterministic procedures, such as Apollonian gaskets. In this work,
we focus on disordered sphere tessellations that are constructed by
implementing a multicomponent version of the aforementioned
RSA packing procedure, which is a multi-stage process.

Specifically, this multi-stage RSA process has a control param-
eter and a control function, namely, an upper bound vmax on cell
volumes and a positive decreasing function gðiÞ for natural
numbers i, where gð1Þ ¼ 1 and its infinite sum exists (i.e.,P∞

i¼1gðiÞ<∞). Using these factors, we determine the prescribed
number N of spheres that are inserted in each stage, and the largest
cell volume vð1Þ to fill all space:

N≡

&�����V d

�����
, 

vmax
X∞
m¼1

gðmÞ
!’

; and (5)

�����V d

����� ¼ Nvð1Þ
X
i¼1

∞
gðiÞ; (6)

where QxS is the ceiling function and jV dj is the volume of the
simulation box. In the mth stage, the sphere has volume
vðmÞ ¼ vð1ÞgðmÞ and diameter Dm, and the prescribed covering

fraction is hm ¼ ðPm
i¼1Niv

ðiÞ=
��V d

��Þ:
Using these parameters, sphere tessellations are constructed by

the following steps:

1. Begin with an empty hypercubic simulation box in ℝd, whose
volume is jV dj, under the periodic boundary conditions.

2. In the first stage (m ¼ 1), N nonoverlapping spheres of an
identical volume vð1Þ (i.e., diameter D1) are irreversibly,
sequentially, and randomly added in the simulation box (i.e.,
RSA procedure). The insertion in this stage stops only when the
packing reaches to a prescribed covering fraction Nvð1Þ=
��V d

��,
unless the packing becomes saturated. At the end of the first
stage, N1(� N) spheres are added and the associated covering
fraction is h1≡N1v

ð1Þ=
��V d

��.
3. In themth stage (m>1), nonoverlapping spheres of an identical

volume vðmÞð< vðm�1ÞÞ are inserted via the RSA procedure into
the packing generated up to the ðm� 1Þst stage. Here, the
spheres in the mthe stage also should be nonoverlapping to
those in the previous stages. The insertion stops when the
packing reaches to a prescribed covering fraction
N
Pm

i¼1v
ðiÞ=jV dj, unless the packing becomes saturated. At the

end of this stage, Nm spheres are additionally inserted, and thus
the packing has N mð≡

Pm
i¼1NiÞ spheres in total and a covering

fraction hm ¼ ðPm
i¼1Niv

ðiÞ=
��V d

��Þ:
4. This procedure is repeated until it reaches to a prescribed

number of stages.

In the RSA procedure of steps 2 and 3, we implement the
aforementioned voxel-list algorithm [59]. In this work, we consider
a power-law scaling gðmÞ ¼ 1=mp whose infinite series converges
to the Riemann zeta function zðpÞ, and thus schedule covering
fraction in the mth stage is

Pm
n¼1n

�p=zðpÞ. We choose scaling ex-
ponents 1< p<2 because at scaling exponent higher than 2 makes
it more difficult to insert additional particles as the number m of
stages increases [64]; see the Supplementary Material for details of
the simulation parameters employed.
3. Theoretical analyses

In this section, we precisely describe the tessellation-based
procedure. We analytically prove that the constructed dispersions
are strongly hyperuniform by deriving the small-jkj scaling of the
spectral densities for spherical particles and subsequently provide
an intuitive rationale of the theoretical results.
3.1. Tessellation-based procedure

Consider a hypercubic simulation box of side length L in d-
dimensional Euclidean space ℝd under the periodic boundary
conditions. Our procedure, graphically illustrated in Fig. 1, consists
of the following steps:

1. Divide the simulation box into N disjoint cells whose maximal
lengths must be smaller than a given length scale D, which also
should be much smaller than L; see Fig. 1(a).

2. Fill the jth cell Cj with a single particle or multiple particles of
general shape of total volume f

��Cj��; see Fig. 1(b) for the simple
instance of a single particle per cell. Then, repeat the same
process over all cells. The global packing fraction of the con-
structed dispersion is identical to the local-cell packing fraction
f.

We call the restriction on the cell size in step 1 the bounded-cell
condition. We note that given an initial tessellation, our construc-
tion is realizable only when the local-cell packing fraction f in step
2 is smaller than or equal to the maximal packing fraction fmax, i.e.,

f � fmax≡min
j¼1

N
8<
:
v1

�
Rmax
j

�
��Cj��

9=
;; (7)

where
��Cj�� and Rmax

j represent volume of the jth cell and radius of



Fig. 1. Schematics illustrating the tessellation-based procedure to construct disordered
hyperuniform dispersions. (a) One first tessellates the space with disjoint cells whose
maximal lengths are shorter than a certain length scale Dð≪LÞ, where

��Cj�� represents
the volume of cell j. (b) For a specified packing fraction 0<f<1, within each cell Cj one
places a single particle of general shape of volume f

��Cj��. This ensures that the local-cell
packing fraction f is identical to the global packing fraction of the resulting dispersion.
(c) A special case of constructed dispersions with circular disks and a circular obser-
vation window of large radius Rð[DÞ. The volume-fraction fluctuations arise only
inside a narrow yellow-shaded region whose effective thickness is thinner than D, and
thus the resulting fluctuations are on the order of Rd�1, i.e., class I hyperuniformity. (d)
The corresponding hyperuniform dispersion of randomly oriented squares. The same
rationale explains the hyperuniformity of the dispersion of squares (d) as well as the
Hashin-Shtrikman multiscale coated-disks structures shown in Fig. 4(b). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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the largest sphere inscribed in this cell, respectively. Roughly
speaking, the maximal packing fraction fmax becomes larger when
the cell shapes become more isotropic (sphere-like).
Fig. 2. Implementation of the tessellation-based methodology via Voronoi tessella-
tions. (a) A portion of Voronoi tessellation of a progenitor packing (i.e., a 2D saturated
RSA packing) of white circles. (b) A hyperuniform dispersion (blue disks) of packing
fraction f that is constructed by our methodology from (a) with the particle centers
fixed. (c) Schematic of two types of maximal packing fractions f

ð1Þ
max and fmax. In this

cell, while at f ¼ fmax the particle can be as large as the largest inscribed circle (green
circle), at f ¼ f

ð1Þ
max the particle size can be as large as the largest inscribed circle (black)

that is concentric to the initial particle (white circle). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of this
article.)
3.2. General theoretical analyses

Here, we sketch the proof that the constructed dispersions are
hyperuniform, the details of which are provided in Ref. [65]. We
start from a general expression (2) for the spectral density of a
sphere packing of various particle radii [13,55,56]. We now
decompose f

R
V d

dr0e�ik$r0 into the Fourier transform of each cell,
and rearrange each term with that of the associated particle.
Importantly, the bounded-cell condition guarantees that the Four-
ier transforms of both a cell Cj and the associated particle j can be
well approximated by their Taylor series about k ¼ 0. It follows that
the tessellation-based procedure ensures that the leading order
terms in these series exactly cancel one another such that the
remaining terms exhibit power-law scalings in the wavenumber,
i.e., jkja as jkj/0. A detailed analysis given in Ref. [65] shows that in

the small-jkj limit, ~cV ðkÞ � f2
��k��2 is achievable, in general. How-

ever, the behavior ~cV ðkÞ � f2
��k��4 is achieved when the special

condition k,½PN
j¼1Drjv1ðRjÞe�ik,rj � ¼ 0 is satisfied, where Drj rep-

resents the displacement between the centroids of cell j and the
associated particle. These results clearly show that the constructed
dispersions are hyperuniform of class I for f � fmax, given in Eq. (7),
which also guarantees that the particles remain inside the associ-
ated cells. Note that ~cV ðkÞ is exactly the same for either the particle
or matrix (space exterior to particles) phases [13] and hence the
matrix phase is also strongly hyperuniform.

To understand intuitively why a dispersion constructed by this
procedure is hyperuniform, it is useful to consider the local volume-
fraction variance s2V ðRÞ. Imagine sampling the constructed disper-
sion with many randomly placed observation windows of radius
Rð[DÞ. Clearly, the volume-fraction fluctuations will be concen-
trated only in the small region near the boundary of the window, as
shown in Fig. 1(c). Consequently, the variance in the phase-volume
will be proportional to the window surface area in the large-R limit,
i.e., v1ðRÞ2s2V ðRÞ � Rd�1, and in turn s2V ðRÞ � R�ðdþ1Þ, implying that
such dispersions are strongly hyperuniform (class I). Our method-
ology is valid for any particle shape as shown in Fig. 1(d) and allows
for the addition of multiple particles per cell provided that local-
cell packing fraction is identical for each cell. However, for
concreteness, wemainly analyze dispersions that have only a single
spherical particle in each cell.

4. Disordered hyperuniform dispersions derived from
Voronoi tessellations

As a proof-of-concept, we now implement the tessellation-
based procedure numerically via Voronoi tessellations (see Sec.
2.4) of disordered and “nonhyperuniform” sphere packings; see
Fig. 2. Thus, performing our methodology from Voronoi tessella-
tions provides an efficient mapping that remarkably converts very
large (N � 107) nonhyperuniform progenitor point patterns to
perfectly hyperuniform dispersions.



J. Kim, S. Torquato / Acta Materialia 168 (2019) 143e151 147
To properly implement our methodology, the Voronoi tessella-
tions of the progenitor point patterns should obey the bounded-cell
condition of step 1. Surprisingly, when sample sizes are sufficiently
large, this condition is satisfied by Voronoi tessellations of virtually
all statistically homogeneous point patterns, including Poisson
point patterns. This seems counterintuitive because in the infinite-
sample-size limit Poisson point patterns as well as many other
disordered ones can possess arbitrarily large holes, or equivalently,
arbitrarily large Voronoi cells. Nonetheless, a detailed analysis
given in Ref. [65] definitely demonstrates that practically all sam-
ples of these systems meet the bounded-cell condition as the
sample size grows. To sketch the basic idea, we note that for Poisson
point patterns of 500;000 points, the probability that a single
finite-size sample possesses a hole larger than 0:1% of its sample
size is around 10�22, and this probability becomes exponentially
lower as sample size grows. Interestingly, while such rare events of
large hole formation play a crucial role in many physical phenom-
ena, such as the diffusion-controlled reactions [66], the bounded-
cell condition is not governed by these rare events. This has the
crucially practical implication that any statistically homogeneous
point pattern, whether hyperuniform or not, can be used to
numerically implement our mapping, which is consistent with a
recent study of random fields generated from Voronoi tessellations
for the special case of a Poisson point process [67].

In this paper, we choose to perform the tessellation-based
procedure from Voronoi tessellations of saturated RSA packings;
see Fig. 2(a) and Sec. 2.4. In contrast to uncorrelated Poisson point
patterns, saturated RSA packings unquestionably meet the
bounded-cell condition for even relatively small sample sizes (say,
10dþ1 particles in d dimensions). From saturated RSA packings via
the voxel-list algorithm [59], for simplicity we construct disper-
sions (Fig. 2(b)) by solely scaling particle sizes without changing
their positions, and hence their maximal packing fractions are
defined by f

ð1Þ
max, illustrated in Fig. 2(c).

Fig. 3 summarizes simulation results of our methodology from
Fig. 3. Simulation results of dispersions constructed from saturated RSA packings in ℝ2 and
packings on a semi-log scale (larger panel) and a linear scale (inset). Here, jCj represents the
densities of 2D saturated RSA packings and the constructed dispersions on a log-log (large
number density of particle centers. We note that both progenitor packings and the constructe
spectral densities ~cV ðkÞ=f2 of the constructed dispersions for various local-cell packing frac
packings.
Voronoi tessellations of saturated RSA packings. We have con-
structed large saturated RSA packings with Nz107 and 106 parti-
cles in d ¼ 2 and 3, respectively. For these progenitor packings, the
maximal packing fractions f

ð1Þ
max are computed from Eq. (7) by

replacing Rmax
j with a half of the nearest-neighbor distance of

particle j. The corresponding values of f
ð1Þ
max are 0:360ð4Þ and

0:252ð7Þ in d ¼ 2 and d ¼ 3, respectively. Details of the simulation
parameters employed, computational times, and machine type are
summarized in the Supplementary Material. By construction, our
dispersions always have a particle-size distribution that is identical
to the cell-size distribution (Fig. 3(a) and (d)), which can be well
approximated by the Gamma or the log-normal distributions. Thus,
from the definition of a saturated RSA packing, we can estimate
bounds on the particle volumes at the local-cell packing fraction f

as follows: fsat <
v1ðRjÞ
fjCj <2dfsat, where fsat represents the saturated

packing fraction of RSA in ℝd and jCj is the mean cell-volume. In
fact, the largest particle volumes are about three times as large as
the smallest ones in both d ¼ 2 and 3. Finally, the spectral density

exhibits the behavior ~cV ðjkjÞ � f2
��k��4 as jkj goes to zero (Fig. 3(b)-

3(c) and 3(e)-3(f)). Thus, the constructed dispersions in both ℝ2 and
ℝ3 are strongly hyperuniform (class I) and their deviation termPN

j¼1Drjv1ðRjÞ effectively vanishes. Finally, it is noteworthy that the
spectral densities of both progenitor and constructed dispersions
collapse onto a single curve for intermediate wavenumbers; see
insets in Fig. 3(b,e). This behavior is expected, since both disper-
sions have identical local statistics (see Fig. 3(a) and (d)).

5. Hyperuniformity of the optimal coated-sphere structures

It is noteworthy that our tessellation-based methodology can be
applied to other tessellations besides Voronoi tessellations that
consist of polyhedral cells. For example, although space cannot be
tessellated by identical nonoverlapping spheres, it can be
ℝ3. (a) The probability density function of Voronoi cell volume
��Cj�� of 2D saturated RSA

average cell volume. Error bars represent standard deviations (see Sec. 2.1). (b) Spectral
r panel) and a linear scale (inset), where a≡r�1=d , d is space dimension, and r is the
d dispersions are scaled to the packing fraction f ¼ 0:01. (c) Log-log plot of normalized
tions f. (def) Corresponding results of constructed dispersions from 3D saturated RSA



Fig. 4. Illustration of the construction of the coated-spheres model via sphere-
tessellations in two dimensions. (a) An initial multiscale-disk tiling (400th stage)
and (b) a dispersion constructed via the tessellation-based procedure from (a), which
is the coated-disks model.
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tessellated by nonoverlapping spheres with a polydispersity in size
down to the infinitesimally small; see, for example, the multiscale-
sphere tessellation in Fig. 5(a) and Sec. 2.5. Application of our
tessellation-based procedure to multiscale-sphere tessellations
should produce hyperuniform dispersions, regardless of the parti-
cle shapes and cell positions with varying degrees of order/disor-
der. We now show that the famous Hashin-Shtrikman multiscale
coated-spheres structures from the theory of heterogeneous ma-
terials are a special case derived from such sphere tessellations.
This broad class of particulate composites are optimal for the
effective thermal (electrical) conductivity and elastic moduli for
prescribed phase properties and volume fractions [13,68,69]. Such
an optimal two-phase material consists of composite spheres that
are composed of a spherical core of one phase (dispersed phase)
that is surrounded by a concentric spherical shell of the other phase
such that the fraction of space occupied by the core phase is equal
to its overall phase volume fraction. The composite spheres fill all
space, implying that their sizes range down to the infinitesimally
small. Thus, this structure is a dispersion, i.e., the matrix (red re-
gion) is a fully connected (continuous) phase and the inclusions
(blue regions) are “well-separated” from one another [70,71]; see
Fig. 5(b). Here, we, for the first time, prove that these Hashin-
Shtrikman multiscale optimal dispersions are in fact hyperuni-
form, which apparently is related to their optimal transport and
elastic properties.

It is crucial to observe that in the coated-spheres model, the
composite spheres comprise a multiscale-sphere tessellation (see
Fig. 5(a)) and the fraction of space occupied by the core phase is
equal to its global phase volume fraction. In other words, these
optimal structures can be constructed via our methodology from
multiscale-sphere tessellations. Assuming the bounded-cell con-
dition, this implies that the coated-spheres model should be
hyperuniform, whether disordered or not. Further analysis shows
that for the coated-spheres model of packing fraction f in ℝd, the
small-jkj scaling of the associated spectral density will exhibit the

following behavior: ~cV ðjkjÞ � ðfð1� f2=dÞÞ2jkj4, implying class I;
see Ref. [65] for details.

We carry out the challenging numerical task of constructing such
disordered multiscale dispersions and verify their hyperuniformity.
To do so, first we implement a multicomponent version of the
aforementioned RSA packing procedure, which amounts to a multi-
stage process; see Sec. 2.5. Then, we simulate the coated-spheres
model of the inclusion volume fraction f by reducing sphere vol-
umes in a precursor packing at a volume ratio of f without moving
their centers. In a finite mth stage, the precursor packing will not
cover all space andhence therewill be gaps inwhich smaller spheres
can be added in next stages. Thus, as the number of stages increases
in the limit of m/∞, those gaps are eventually covered by spheres
of size down to the infinitesimally small, i.e., limm/∞hm ¼ 1. To
achieve a nearly complete tiling of space (say, hmz0:95) in d ¼ 2,
this process requires around a few hundred stages; see Fig. 5c).

To estimate the degree of hyperuniformity in the mth stage, we
employ an upper bound of the spectral density ~c

ðmÞ
V ðkÞ with any

prior knowledge of cell-volume distributions [65]:

~c
ðmÞ
V ðkÞ �
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R j
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2
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���V d

���f2ð1� hmÞ2;
(8)

where f stands for the local-cell packing fraction, and R j denotes
radius of cell j. In short, this upper bound is obtained by assuming
that complex Fourier components of all uncovered gaps construc-
tively interfere, and thus the second term in Eq. (8) represents the
largest possible volume-fraction fluctuations due to these gaps.
This rigorous upper bound (8) indicates that in the limit of hm/1,
the spectral density is at least on the order of k4 for small k's,
implying that our coated-spheres construction becomes strongly
hyperuniform in the limit of m/∞.

In what follows, we focus on numerical results in two-
dimensional cases for simplicity. The simulations proceed up to
the 400th stage with the following parameters. Particle volumes in
the mth stage is determined by a power-law scaling
v1ðDm=2Þ ¼ v1ðD1=2Þm�p for a scaling exponent p that ranges from
1 to 2 concerning computational efficiency. An upper bound vmax

on cell volumes is chosen to achieve v1ðD1=2Þ(0:001jV 2j; see Sec.
2.5 and the Supplementary Material. Fig. 4(a) and 4(b) illustrate our
multiscale-disk tiling model in the 400th stage with p ¼ 1:5, and
the resulting coated-disks model at the local-cell packing fraction
f ¼ 0:25. Fig. 5(a) summarizes that covering fraction of the mth



Fig. 5. Structural characteristics of the simulated coated-disks models (Sec. 2.5). (a) Covering fraction hm of simulated initial tilings as functions of stage number m. (b) Spectral
densities for the simulated multiscale coated-disks model at various m's at the local-cell packing fraction f ¼ 0:5. Error bars represent standard deviations (see Sec. 2.1). (c) Spectral
density at the minimal wavenumber ~cV ðk/0Þ as a function of fraction of uncovered space 1� hm .

Fig. 6. Fabrication of designed hyperuniform dispersions and matrices in three di-
mensions. (a) A portion of designed dispersion of spherical particles (left) and the
corresponding matrix (right) at f ¼ 0:23, which are constructed from a 3D saturated
RSA packing. (a) A portion of designed dispersion of cubical particles (left) and the
corresponding matrix (right). The hyperuniform matrices with spherical or cubical
pores can be fabricated using 3D printing techniques.
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stage of our model for various values of a scaling exponent p. This
shows that in finite stages m, our model has the uncovered gaps
that contribute to the long-wavelength fluctuations and thus be-
comes nearly hyperuniform, rather than perfectly hyperuniform.
However, Fig. 5(c) clearly demonstrates as those gaps are filled
(hm/1) with smaller composite disks, the associated fluctuations
~c
ðmÞ
V ðk/0Þ vanish on the order of ð1� hmÞ2. This scaling behavior is

consistent with our upper bound (8) although our prediction is
grossly overestimated. Thus, from both our theoretical and nu-
merical results, we conclude that the ideal multiscale coated-
spheres model with hm ¼ 1 will be strongly hyperuniform.

6. Fabrication of the computational designs

Importantly, our designed hyperuniform structures obtained
from Voronoi tessellations can be easily fabricated via either
photolithographic or 3D-printing techniques. State-of-the-art
photolithography fabrication methods are highly suitable for
mass production, and capable of creating a 2D pattern on awafer up
to 30 cm in diameter with 25 nm in minimal feature size [51]. Since
any sharp corners in the designed particle shapes are rounded up to
the minimal feature size, it is easier to fabricate circular particles
than polygonal ones. When the minimal feature size is around
1:5 mm, one can easily fabricate our two-dimensional hyperuniform
designs with more than one million particles. For three-
dimensional designs, modern 3D-printing techniques [54] can be
applied. Since a printed structure must be topologically connected
phase that is mechanically self-supporting, one needs to print the
connected matrix phase corresponding to our hyperuniform dis-
persions [72] as shown in right panels in Fig. 6. Due to recent ad-
vances in 3D-printing techniques, even commercial desktop 3D-
printers can achieve around 100 mm in XY-resolution, 20 mm in Z-
resolution [73], and can print a sample with dimensions
125� 125� 125 cm3 in 50 h. Such devices should be able to print
our designs of around 50 million pores when the smallest pore
diameter is set around 300mm.

7. Conclusions

In summary, we provide an efficient procedure that is capable of
constructing very large disordered dispersions that are perfectly
hyperuniform. Unlike many previous methods that have been used
to generate disordered hyperuniform materials, our procedure is
simple to implement as it only involves constraining the local-cell
packing fraction, which is independent of the rest of a system.
Furthermore, all computations to determine particle volumes can
be exactly performed and easily parallelized. Our methodology
shares some similarities with the “equal-volume tessellation” to
obtain hyperuniform point patterns [74] in which the local number
density within each cell is identical. However, our procedure is
more versatile in that it can be applied to Voronoi tessellations of
disordered point patterns and multiscale-sphere tessellations that
we discussed in this paper.

For simplicity, we have focused in this work on constructed
dispersions of spherical particles and sketched the proof of their
hyperuniformity. In Ref. [65], we provide detailed derivations of the
spectral densities of hyperuniform dispersions consisting of parti-
cles of arbitrary shape and show how any statistically homoge-
neous progenitor packing satisfies the bounded-cell condition.
There, we also present additional simulation results for a variety of
progenitor sphere packings as well as packings of nonspherical
particles. In the case of coated-spheres model, we provide addi-
tional mathematical details as well as numerical results using
different cell-volume scalings [65].
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In this work, we have shown that local statistics alone generally
does not determine hyperuniformity, which although reinforces
previous observations (see a recent review [3] and references
therein), is not commonly understood. While the nonhyperuniform
progenitor configurations have no influence on the behavior of the
spectral density around the origin, since the constructed dispersion
is hyperuniform of class I, it starts to determine its behavior away
from the origin at intermediate to large wavenumbers. Indeed, at
intermediate wavenumbers the spectral densities of the progenitor
and constructed dispersions collapse onto one another [65]
because local statistics, such as Voronoi cell volumes and nearest-
neighbor distance distributions, are identical for both systems.
This outcome is consistent with the fact that hyperuniformity is a
global property of a system.

It should not go unnoticed that many other tessellations can be
employed in our tessellation-based methodology, including gen-
eralizations of Voronoi tessellations, such as Laguerre or radical
tessellations [60,61] and Voronoi tessellations in Manhattan dis-
tance [62], Delaunay triangulations [13], “Delaunay-centroidal”
tessellations [4,70], and disordered isoradial graphs [75] whenever
they meet the bounded-cell condition. Furthermore, our method-
ology allows one to tune particle shapes and their numbers within
each cell while preserving hyperuniformity. This exploration of
different tessellations and particle geometries/numbers in each cell
enables one to generate an enormous class of hyperuniform dis-
persions and hence represents fertile ground for future research.

We have established for the first time that the optimal Hashin-
Shtrikman multiscale dispersions are indeed hyperuniform. This
finding suggests that hyperuniformity is evidently a crucial char-
acteristic to achieve optimality with respect to effective transport
and elastic properties [13,68,69]. Thus, not only do the spheres have
to be “well-separated” from one another (as is traditionally un-
derstood) but the entire dispersion should possess the global
property of hyperuniformity to achieve optimal effective physical
properties, which heretofore had not been known. While it has
begun to be shown that some disordered hyperuniform dispersions
have desirable and nearly optimal transport, mechanical and opti-
cal properties [7,8,10], it will be of great interest to study the
physical properties of the enormous class of hyperuniform dis-
persions that can be designed and tuned by our tessellation-based
methodology. These computational designs can subsequently be
combined with the aforementioned 2D and 3D fabrication tech-
niques to accelerate the discovery of hyperuniform two-phase
materials.
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