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Abstract.  The prime numbers have been a source of fascination for millennia 
and continue to surprise us. Motivated by the hyperuniformity concept, which 
has attracted recent attention in physics and materials science, we show that 
the prime numbers in certain large intervals possess unanticipated order across 
length scales and represent the first example of a new class of many-particle 
systems with pure point diraction patterns, which we call eectively limit-
periodic. In particular, the primes in this regime are hyperuniform. This is 
shown analytically using the structure factor S(k), proportional to the scattering 
intensity from a many-particle system. Remarkably, the structure factor of 
the primes is characterized by dense Bragg peaks, like a quasicrystal, but 
positioned at certain rational wavenumbers, like a limit-periodic point pattern. 
However, the primes show an erratic pattern of occupied and unoccupied sites, 
very dierent from the predictable patterns of standard limit-periodic systems. 
We also identify a transition between ordered and disordered prime regimes 
that depends on the intervals studied. Our analysis leads to an algorithm that 
enables one to predict primes with high accuracy. Eective limit-periodicity 
deserves future investigation in physics, independent of its link to the primes.
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Introduction

X-ray and neutron scattering techniques provide powerful ways to probe the structure 
of matter [1]. The observed scattering intensity in Fourier (reciprocal) space is encoded 
in the structure factor S(k), where k is the wave vector. A fundamental problem 
in condensed matter theory and statistical physics is the determination of the class 
of ordered many-body systems in d-dimensional Euclidean space Rd with pure point 
diraction or scattering patterns, i.e. those described by a structure factor involving 
only a set of Dirac delta functions (Bragg peaks):

S(k) =
∞∑
j=1

ajδ(k− kj),� (1)

where the aj (j = 1, 2, . . .) are positive weights. It is well-known that perfect crystals 
(periodic point patterns), which have scattering patterns that are quite dierent from 
disordered systems (e.g. gases and liquids) with continuous spectra, fall in this class; see 
figure 1 for illustrative examples. It came as a great surprise in the early 1980’s that a 
family of noncrystalline (aperiodic) states of matter, called ‘quasicrystals’ [2], also have 
pure point diraction, but with a twist, namely, the corresponding Bragg peaks densely 
fill reciprocal space exhibiting symmetries that would be prohibited for crystals. A less 
familiar phylum of point patterns obeying (1) are limit-periodic systems [3, 4]. These 
are deterministic point patterns that consist of a union of an infinite set of distinct 
periodic structures with dierent (rational) periods, and hence are also characterized 
by dense Bragg peaks. What dierentiates limit-periodic systems from quasicrystals is 
that the ratio between any two peak locations is rational.

Where in this zoology of particle systems does one place the prime numbers? These 
are the numbers such as 2, 3, 5, 7, 11, 13, . . . , 163, . . . , 691, . . . , 277,232,917 − 1, . . . , hav-
ing no proper factors, viewed as a one-dimensional (1D) point pattern. In the present 
paper, we show that the primes in judiciously chosen intervals have dense Bragg peaks, 
similar to a limit-periodic system, and hence satisfy (1). This is in astonishing contrast 
to the general understanding of primes as pseudo-random numbers [6]. The apparent 
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diculty of factoring large numbers into primes is basic to contemporary cryptogra-
phy, and the lack of any obvious pattern is nicely summarized in a famous quotation 
attributed to Vaughan: ‘ It is evident that the primes are randomly distributed but, 
unfortunately, we do not know what ‘random’ means.’ [5]. In short intervals, say from 
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Figure 1.  Illustrative examples of structure factors for ordered and disordered point 
patterns in 1D Euclidean space: (a) spatially uncorrelated (Poisson process or ideal 
gas); (b) Liquid; (c) Crystal (integer lattice); (d) Quasicrystal (Fibonacci chain); 
(e) Limit-periodic (period-doubling chain); (f) Nontrivial zeros of the Riemann zeta 
function. Whereas the cases (a) and (b) are examples of nonhyperuniform systems, 
the remaining cases represent hyperuniform examples.
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a large number X to X + ln(X), Gallagher [6] proved that the primes have a pseudo-
random spatial distribution with gaps following a Poisson process. In the present paper, 
we study longer intervals, such as X to 2X, and find that the primes have multiscale 
order characterized by dense Bragg peaks. Thus they obey (1), but are distinguished 
from both quasicrystals and limit-periodic systems in ways that we detail below.

Much of the modern understanding of prime numbers is based on a fundamental 
insight of Riemann [7]. He introduced what we now call the Riemann zeta function 
ζ(s), for a complex variable s, and indicated an explicit formula relating the primes to 
its zeros. Our original motivation to study the scattering patterns of the primes is the 
fact that the nontrivial zeros5 of the Riemann zeta function have an exotic hidden order 
on large length scales called hyperuniformity. A hyperuniform point configuration in Rd 
is one in which S(k) tends to zero as the wavenumber k tends to zero or, equivalently, 
one in which the local number variance σ2(R) associated within a spherical window of 
radius R grows more slowly than Rd in the large-R limit [8]. All perfect crystals and 
quasicrystals are hyperuniform, but typical disordered many-particle systems, includ-
ing gases, liquids, and glasses, are not. Disordered hyperuniform many-particle systems 
are exotic states of amorphous matter that have attracted considerable recent attention 
in physics and materials science because of their novel structural and physical proper-
ties [9–19]. According to the celebrated Riemann hypothesis, the nontrivial zeros of the 
zeta function lie along the critical line s = 1/2 + it with t ∈ R in the complex plane and 
thus form a 1D point process. A resolution of this hypothesis is widely considered to 
be one of the most important open problems in pure mathematics [20]. Montgomery 
[21] advanced the conjecture that the pair correlation function g2(r) of the (normalized) 
zeros takes on the simple form 1− sin2(πr)/(πr)2. Remarkably, this exactly matches 
the pair correlation function of the eigenvalues of certain random Hermitian matrices 
[22–24]. The corresponding structure factor S(k) tends to zero linearly in k in the limit 
k → 0, as shown in figure 1(f). This means that the Riemann zeros are disordered but 
hyperuniform [10]. In his famous essay entitled ‘Birds and Frogs’ [25], Dyson sug-
gested an approach to the Riemann hypothesis where one would first classify all 1D 
quasicrystals and then show that one such quasicrystal corresponds to the non-trivial 
Riemann zeros.

An important aspect of the distribution of prime numbers is that larger ones become 
increasingly sparse. The drop-o is gradual enough that, in Gallagher’s regime of short 
intervals or even for the longer intervals considered here, the density of prime numbers 
can be treated as constant [26]. According to the prime number theorem [27], the prime 
counting function π(x), which gives the number of primes less than x, in the large-x 
asymptotic limit is given by

π(x) ∼ x

ln(x)
(x → ∞).� (2)

One can interpret this as indicating that the probability that a randomly selected inte-
ger less than a suciently large x is prime is inversely proportional to the number of 
digits of x. This implies a position-dependent number density ρ(x) ∼ 1/ ln(x). Thus the 
primes constitute a statistically inhomogeneous set of points in large intervals, becom-
ing sparser as x increases. This means one must be careful in choosing the interval over 

5 The trivial zeros are  −2, −4, −6,..., which have less bearing on prime numbers.
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which the primes are sampled. This observation is crucial to the remarkable properties 
of the primes that we report here.

The hyperuniformity of the Riemann zeros led us to seek intervals in the primes 
in which they might be regarded as a hyperuniform point pattern. In a concurrent 
numerical study [28], we examined the structure factor S(k) for primes in an interval 
[M ,M + L] with M large (say, 1010) and L/M a small positive number. These simula-
tions strongly suggest that the structure factor in such finite intervals exhibits many 
well-defined Bragg-like peaks dramatically overwhelming a small ‘diuse’ contribution, 
indicating that the primes are more ordered than previously known.

Motivated by this numerical study, here we apply the tools of statistical physics to 
understand the nature of the primes as a point process by quantifying the structure 
factor, pair correlation function, local number variance, and the τ order metric in vari-
ous intervals. Our main results are obtained for the interval M � p � M + L with M 
very large and the ratio L/M held constant. This enables us to treat the primes as a 
homogeneous point pattern. We also consider appreciably larger and smaller intervals 
for purposes of comparison. We prove that the primes are characterized by unantici-
pated multiscale order; see [26] for details. Specifically, an analytical formula that we 
derive for their limiting structure factor S(k) has dense Bragg peaks, as in the case of 
quasicrystals [2]. Unlike quasicrystals, however, the prime peaks occur at certain ratio-
nal multiples of π, which is similar to limit-periodic systems [3]. But the primes show 
an erratic pattern of occupied and unoccupied sites, very dierent from the predictable 
and orderly patterns of standard limit-periodic systems. Hence, the primes are the first 
example of a point pattern that is eectively limit-periodic.

Our analysis is rooted in the circle method of Hardy–Littlewood [29], in particular 
their conjecture on prime k-tuples, but we emphasize the perspective of statistical 
physics and the new consequences that arise in the limit of infinite system size. Our 
analytical formula (19) expresses the pair correlation function g2, including the density 
of twin primes, as an infinite sum, whereas the celebrated Hardy–Littlewood represen-
tation was originally presented as a product over primes. Using a scalar order metric τ 
numerically calculated from S(k), we identify a transition between the order exhibited 
when L is comparable to M and the uncorrelated behavior when L is only logarithmic 
in M. Our formulation also yields an algorithm that enables one to predict (reconstruct) 
primes with high accuracy.

Background and definitions

For a statistically homogeneous point process in d-dimensional Euclidean space Rd 
at number density ρ, let g2(r) denote the standard pair correlation function, which is 
normalized such that it decays to unity for large |r| in the absence of long-ranger order. 
The corresponding structure factor S(k) is defined as follows:

S(k) = 1 + ρh̃(k),� (3)

where

h̃(k) =

∫

Rd

h(r) exp [−i(k · r)] dr� (4)

https://doi.org/10.1088/1742-5468/aad6be
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is the Fourier transform of the total correlation function h(r) ≡ g2(r)− 1 so that

h(r) =
1

(2π)d

∫

Rd

h̃(k) exp [i(k · r)] dk.� (5)

While S(k) is a nontrivial function for spatially correlated point processes, it is exactly 
equal to unity for all k for a homogeneous Poisson point process.

As noted earlier, we consider the primes in the interval [M ,M + L] as a 1D lattice-
gas in which the primes occupy a subset of the odd integers. Henceforth, we will focus 
on 1D systems. A particular lattice-gas configuration under periodic boundary condi-
tions is characterized by the local density:

η(r) =
N∑
i=1

δ(r− xi),� (6)

where N is the number of primes in the interval. The Fourier transform of the local 
density, called the complex collective density variable η̃(k), is given by

η̃(k) =
N∑
j=1

exp(−ik · rj).� (7)

The corresponding structure factor is given by

S(k) ≡ |η̃(k)|2

N
(k �= 0)� (8)

where the wavenumber k = |k| ranges from zero to 2π/a, extended periodically; and 
a is the lattice spacing. Ultimately, we pass to the limit N → ∞ and assume ergodic-
ity. A statistically homogeneous point process is ergodic if any single realization of the 
ensemble is representative of the ensemble in the infinite-system-size limit.

A useful scalar quantity that is capable of capturing the degree of translational 
order of a point process in d-dimensional Euclidean spaces across length scales is the τ 
order metric [15]:

τ ∝
∫

Rd

[S(k)− 1]2 dk,� (9)

where S(k) is the ensemble-averaged structure factor in the thermodynamic limit. In 
this paper, we use the discrete-setting counterpart of this order metric for a 1D lattice 
gas in a fundamental cell of length L under periodic boundary conditions [33]:

τ =
1

Ns

Ns−1∑
j=1

(
S

(
jπ

Ns

)
− (1− f)

)2

,� (10)

where Ns is the number of lattice sites within the fundamental cell and f is the occupa-
tion fraction.

We define an uncorrelated (Poisson) lattice gas as the discrete counterpart of an 
ideal gas in R: each site has a probability f of being occupied, independent of other 
sites. For such systems, the ensemble-averaged S(k) is a constant 1  −  f, so that τ = 0 
in the infinite-system-size limit. Thus, we see from (10) that a deviation of τ from zero 
measures translational order with respect to the fully uncorrelated case.

https://doi.org/10.1088/1742-5468/aad6be
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The local number variance σ2(R) associated within an interval (window) of length 
2R for a 1D homogeneous point process in R [8] depends on an integral involving the 
structure factor S(k):

σ2(R) =
2ρR

π

∫ ∞

0

S(k)α̃2(k;R)dk,� (11)

where α̃2(k;R) = 2 sin2(kR)/(kR). Integrating by parts leads to an alternative represen-
tation of the number variance [31]:

σ2(R) = −ρR

π

∫ ∞

0

Z(k)
∂α̃2(k;R)

∂k
dk,� (12)

where Z(K) is defined by (16). The quantity Z(k) has advantages over S(k) in the 
characterization of quasicrystals and other point processes with dense Bragg peaks [31]. 
This is the formula that we employ to determine the local variance of the number of 
primes. The local number variance for uncorrelated lattice gases grows linearly with R. 
A hyperuniform point process in R has a local number variance σ2(R) that grows more 
slowly than R in the large-R limit [8].

Results

We consider the primes in the interval [M ,M + L] to be a special ‘lattice-gas’ model: 
the primes and odd composite integers are ‘occupied’ and ‘unoccupied’ sites, respec-
tively, on an integer lattice of spacing 2 that contains all of the positive odd integers. 
We study the pair statistics between primes in such intervals. If L is much larger than 
M, the density 1/ ln(n) drops o appreciably as n ranges from M to M  +  L, and then 
the system becomes inhomogeneous (nonuniform), which is diametrically the opposite 
of hyperuniform. On the other hand, if the interval is small such that L ∼ ln(M), one 
enters Gallagher’s regime in which the primes are Poisson distributed.

One of our main analytical results is formula (13) for the structure factor of the 
primes, valid in the regime M → ∞ with L/M converging to a fixed positive value 
denoted β. Here ln(M + L) = ln(M) + ln(1 + L/M) is asymptotic to ln(M). Our 
M → ∞ limiting form for S(k), given by equation (14), is valid for any positive value of 
β > 0. These results lead to several significant consequences, which we describe below.

We study various prime intervals, but we show that when L ∼ βM , the major 
contribution to the structure factor S(k) is a set of dense Bragg peaks that are located 
at certain rational values of k/π. Let N be the number of primes in the interval from M 
to M  +  L. For finite but large N, the structure factor at special rational values of k/π 
is given by Bragg peaks with heights given by [26]

S(πm/n) ∼ N

φ(2n)2
µ(2n)2.� (13)

Here |m| � n and n are co-prime integers (share no common divisors, except 1), φ(n) is 
Euler’s totient function [30], which counts the positive integers up to a given integer 
n that are co-prime to n, and µ(n) is the Möbius function [30] so that µ2(2n) is one 

https://doi.org/10.1088/1742-5468/aad6be
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whenever 2n is square-free and zero otherwise. Notice that as n grows, the size of the 
peak shrinks because of the denominator φ(n)2. Figure 2 depicts the structure factor 
of the primes obtained from (13) at dierent horizontal scales, where M = 1010 + 1, 
L = 2.23× 108 and n is truncated at nmax = 100 ln(M). This is in excellent agreement 
with the corresponding numerically computed structure factor of the actual primes 
configuration in this interval (top and middle panels of figure 2). The heights of some 
peaks in the numerical result are slightly lower than their analytical predictions. 

Figure 2.  Top: S(k) for the primes as a function of k (in units of the integer 
lattice spacing), as predicted from formula (13) for M = 1010 + 1, L = 2.23× 108 
and nmax = 100 ln(M) is in excellent agreement with the corresponding numerically 
computed structure factor obtained in [28]. Note the many Bragg peaks of various 
heights with a self-similar pattern. Middle: same as the top panel, but at a smaller 
horizontal scale and log vertical scale to reveal the dense peak structure. Bottom: 
the prediction from (13) but with a dierent vertical scale than in the middle 
panel to again reveal the dense peak structure and its stark contrast with the 
uncorrelated (Poisson) lattice gas.

https://doi.org/10.1088/1742-5468/aad6be
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This is caused by the fact that numerical results are limited to a discrete choice of k 
(k = 2πz/L, where z ∈ Z), and hence involve slight mismatches with the appropriate 
exact peak locations (k = πm/n). The numerically determined S(k), which is calcu-
lated at slightly o-peak locations, can have peak heights that are slightly lower than 
the analytically predicted ones in the limit that L → ∞. The structure factor contains 
many well-defined Bragg-like peaks of various intensities characterized by a type of 
self-similarity. This self-similarity becomes exact in the limit M → ∞, due to the fact 
that φ(n1n2) = φ(n1)φ(n2) for relatively prime n1 and n2, so that rescaling preserves the 
relative heights of the peaks given by equation (13). The bottom part of the figure uses 
a dierent vertical scale to compare S(k) to that of an uncorrelated lattice gas. This 
definitively demonstrates that the primes in this interval exhibit order across multiple 
length scales, making them substantially more ordered than the uncorrelated lattice gas 
found by Gallagher for shorter intervals of primes.

‘Eective’ limit-periodicity

The proof of (13), assuming the first Hardy–Littlewood conjecture [29], is given in 
[26]. It is based on grouping the terms in the sum defining S(πm/n) according to 
their remainder after division by 2n. A fundamental heuristic about prime numbers is 
that each of the allowed remainders occurs roughly equally often, so that the primes 
are evenly distributed in arithmetic progressions. This breaks down if the modulus n 
is too large relative to the primes under consideration. Increasingly precise versions 
of this statement have been established rigorously, starting from Dirichlet’s theorem 
that there are infinitely many primes for each remainder to a fixed modulus. A strong 
interpretation conjectured by Elliott–Halberstam plays a role in some of the work of 
the Polymath project pushing progress on gaps between primes to the limit. The key 
calculation underlying our proof is that the roughly even distribution across all possible 
remainders causes constructive or destructive interference in the sum S(πm/n), depend-
ing on the fraction m/n, and leads to (13). Referring to (13), note that if n is even or 
if n has a repeated factor, then µ(2n) = 0 so S(πm/n) vanishes up to the accuracy in 
comparing the number of primes in dierent progressions. If n is odd and square-free, 
then the structure factor has a peak of size N/φ(n)2 (since, n being odd, φ(2n) = φ(n)). 
This explains the peaks observed numerically [28] at, for example, S(π/3). A value on 
the order of N should indeed be viewed as a peak since S(k) is a sum of length N and 
ignoring all cancellation shows that |S(k)| � N . Thus the largest values of S(k) are 
the peaks when k/π is a rational number with odd, square-free denominator. Taken 
together, these locations correspond to eective periodicities, as illustrated in figure 3.

In the limit of infinite system size, the peaks will become Dirac delta functions at 
rational numbers with odd, square-free denominators, and the discrete formula (13) 
(scaled by 2πρ) tends to

lim
M→∞

S(k)

2πρ
=

∑
n∈Z+

�∑
m∈Z

× 1

φ(n)2
δ
(
k − mπ

n

)
,� (14)

where the symbol � is meant to indicate that the sum over n only involves odd, square-
free positive values of n (excluding 1 to eliminate forward scattering) and the sym-
bol  ×  indicates that m and n have no common factor. The double sum on the right hand 

https://doi.org/10.1088/1742-5468/aad6be
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side of (14) weakly converges in the sense that it is well-defined when integrated against 
test functions, including its action under Fourier transformation. Equation (14) implies 
that the ‘diuse’ part observed numerically in [28] vanishes in the infinite-system-size 
limit. Hence, the primes become eectively limit-periodic, despite the variable pattern 
of occupied sites, as proved in [26] and illustrated in figure 3. Such multiscale order in 
the primes appears to be a new discovery.

This is to be distinguished from a standard limit-periodic system, which is a deter-
ministic point process characterized by dense Bragg peaks at rational multiples of π. A 
prototypical example is the period-doubling chain [3]. In this model, there are sites of 
two types, a and b, forming a point pattern on the integer lattice defined by the follow-
ing iterative substitution rule, initialized with a single site a: a → ab and b → aa [3]. 
The locations of the b’s are given by a superposition of an infinite number of arithmetic 
progressions of the form 2  +  4j, 8  +  16j, 32  +  64j, …, with a factor of 4 from one to the 
next. Thus, the infinite-size limit is a union of periodic systems in which S(k) consists 
of dense Bragg peaks at certain rational values k/π. The structure factor associated 
with the a’s (assuming unit lattice spacing) is given by

S(k) =
4π

3

[
∞∑

m=1

δ(k − 2πm) +
∞∑
n=1

∞∑
m=1

2−2nδ

(
k − (2m− 1)π

2n−1

)]
.

�

(15)

Figure 1(e) shows the structure factor for the period-doubling chain.

15 25 35 45 55 65 75 85 95 105 115 125

Figure 3.  Illustration of the superposition of eective multiple periodicities in the 
primes. We take the primes to be ‘occupied’ sites (black dots) on an integer lattice 
of spacing 2 that contains all of the positive odd integers. The crosses indicate 
sites that cannot be occupied because of a certain periodicity 2n (n sites on the 
odd integer lattice), where n is a square-free odd number. For example, the peak 
at π/3 with n  =  3 and m  =  1 corresponds to remainders when dividing by 6. A 
prime must leave a remainder of 1 or 5 or else it would be divisible by 2 or 3. The 
lattice in the figure has a spacing of 2, so these allowed sites appear with a period 
of 3 instead of 6. The forbidden sites appear as red crosses. The other two sites 
may or may not be prime, and if one averages over many periods in a suciently 
large interval, each of them will have an equal occupation probability (due to 
Dirichlet’s theorem on arithmetic progressions). The overall eect of this equi-
distribution of occupied sites is an eective periodicity of 6. Similarly, the primes 
show an eective periodicity of 10 (blue crosses), 14 (green crosses), and even 
larger periods (not shown in the figure). The superposition of all of the eective 
periodicities leads to a pattern of dense Bragg peaks located at mπ/n (where m are 
the positive integers and n is odd and square-free), reminiscent of a limit-periodic 
system even though each local period is subject to erratic disruptions. These peaks 
are illustrated in figure 2. However, if the interval is too small or too large, then 
the eective periodicity would not be seen. It is a distinctive feature of primes in 
intervals from M to M  +  L with M and L large numbers of comparable magnitude.

https://doi.org/10.1088/1742-5468/aad6be
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Hyperuniformity

We now show that the eective limit-periodic form (14) of S(k) implies that the primes 
are hyperuniform. The structure factor S(k) is not a continuous function because there 
are dense Bragg peaks arbitrarily close to 0, so we do not have S(k) → 0 as k → 0 in the 
usual sense. We follow the practice of [31] in such instances and pass to a cumulative 
version of the structure factor, Z(K), defined by

Z(K) = 2

∫ K

0

S(k)dk,� (16)

which is the cumulative intensity function within a ‘sphere’ of radius K of the origin in 
reciprocal space. If Z(K) tends to 0 as a power Kα+1, any positive power α > 0 yields 
hyperuniformity and distinguishes the primes from a Poisson distribution of points 
with the same density. Using relations (14) and (16), we find

lim
M→∞

Z(K)

2πρ
= 2

∑
n

� ∑
mπ/n<K

× 1

φ(n)2
.� (17)

Using (17) together with some results from analytic number theory [26], we can show 
that Z(K) ∼ K2 as K → 0.

Recall that a 1D hyperuniform point process is one in which σ2(R) grows more 
slowly than R in the large-R limit [8]. Using formula (12) that relates σ2(R) to Z(K), 
we find relation (17) implies the primes have a number variance σ2(R) that scales loga-
rithmically with R in the large-R limit, which makes them hyperuniform of class II [32]. 
This is precisely the same growth rate exhibited by the Riemann zeros [10], but as we 
will see, the latter are appreciably less ordered than the former.

Transition between order and disorder

Here we compute the order metric τ via the discrete formula (10). For general lattice 
gases characterized by Bragg peaks, τ/ρ2 grows linearly with L for suciently large L:

τ/ρ2 ∼ cL,� (18)

where c is dependent on the system. Based on this order metric, the primes are substanti
ally more ordered than the uncorrelated lattice gas and appreciably less ordered than 
an integer lattice, but similar in order to the period-doubling chain [3]. For example, 
consider the integer lattice with spacing of occupied sites such that f  =  0.1, chosen to 
match the density of our system of primes. The lattice has c  =  18, much larger than the 
value c  =  0.1674 for primes, which are closer to the period-doubling chain (c  =  0.1429). 
(However, strictly speaking, comparing the magnitudes of the values of τ between the 
primes and the period-doubling chain and drawing conclusions about their relative 
degrees of order is not appropriate due to their very dierent occupation fractions.) In 
all of these ordered examples, τ grows with the system size L. This indicates multiscale 
order in the primes, absent from a case such as the Riemann zeros in which, assuming 
Montgomery’s pair correlation conjecture, τ converges to 2/3 and in particular does 
not grow with L [26].

https://doi.org/10.1088/1742-5468/aad6be
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Now we study the τ order metric for prime-number configurations with dierent 
M and L. Recall that a deviation of τ from zero measures translational order with 
respect to the fully uncorrelated case. As derived from (18) and illustrated by figure 4, 
the constant-τ level curves have the form L ∼ ln2(M), i.e. level curves appear as qua-
dratic curves in the log plot. For an uncorrelated lattice gas for any L and ρ, τ is 
very small. Thus, L ∼ ln2(M) is the boundary between regions where primes can be 
considered to be uncorrelated versus correlated. For the uncorrelated regime in which 
Gallagher’s results apply, L ∼ ln(M), and τ diminishes as M increases. As L increases, 
prime-number configurations move from the uncorrelated regime (τ ∼ 1, L � ln2(M)) 
to the limit-periodic regime we studied in this paper (τ ∼ L, L ∝ M ), and then to the 
inhomogeneous and nonhyperuniform regime, where the density gradient is no longer 
negligible (e.g. if L ∼ M2).

Recovery of Hardy–Littlewood conjecture

We can get the pair correlation function g2(r) of the primes via the limiting form of the 

structure factor (14) by performing the inverse Fourier transform of S(k)− 1 ≡ ρh̃(k) 
using (5), where h̃(k) is the Fourier transform of h(r) ≡ g2(r)− 1 for r �= 0:

g2(r) = 1 +
∑
n∈Z+

� 1

φ2(n)

∑
1�m�n−1

×
exp(rmπi/n).� (19)

The expression given in equation (19) for distinct values of r = 2, 4, 6, . . . is a dierent 
representation of the constants in the famous Hardy–Littlewood k-tuple conjecture 

Figure 4.  Natural logarithm of the order metric τ of prime numbers for 
10 < M < 2× 1010 and 8 < L < 2× 105. The ‘warmer’ colors in the upper left corner 
indicate systems with a larger value of τ, and hence stronger order. The ‘cooler’ 
colors in the lower right indicate relatively disordered systems comparable to an 
uncorrelated lattice gas. The interfaces separating these layers have a parabolic 
shape, which is explained by (18).

https://doi.org/10.1088/1742-5468/aad6be
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(theorem X, p 61 in [29]) for the special case k  =  2. The Hardy–Littlewood conjecture 
is beyond doubt in the mathematical community, and yet far from a rigorous proof. 
Spectacular progress towards it was made recently by Maynard, Zhang, Tao, and the 
massive online collaboration Polymath 8 [34–36]. In particular, Maynard’s theorem 1.2 
from [36] shows that there must be infinitely many prime shifts for a positive propor-
tion of k-tuples.

Summation of (19) for r = 2, 4, 6, 8 and 10 with a cut-o n < 10 000 yields predic-
tions that are in agreement with established values, as shown in table 1. Indeed, we can 
prove [26] that equation (19) is equivalent to Hardy and Littlewood’s original expres-
sion [29]. This adds to the validity of our eective limit-periodic form of the structure 
factor of the primes, which has heretofore not been identified.

Reconstruction of the prime numbers

Note that we not only have an analytical formula for S(k), but also for the complex 
density variable η̃(k), defined by (7), which includes phase information. This analytical 
expression for η̃(k) of the primes enables us to reconstruct, in principle, a prime-number 
configuration within an arbitrary interval [M ,M + L] by obtaining the inverse Fourier 
transform of η̃(k). In practice, one is computationally limited by the fact that one can 

Table 1.  Hardy–Littlewood constants for k  =  2 calculated with our formula (19) 
using nmax = 10 000 for r = 2, 4, 6, 8 and 10 compared to their accurate values [29]. 
The case r  =  2 corresponds to the ‘twin’ primes. Notice that g2(2) = g2(4) = g2(8), 
which has a simple explanation in terms of the Hardy–Littlewood product over 
primes. This product includes a special contribution from primes dividing r, and 
the only such prime is 2 when r is a power of 2.

r Prediction of (19) Reference [29]

2 0.660 161 536 0.660 161 816
4 0.660 161 536 0.660 161 816
6 1.320 323 071 1.320 323 632
8 0.660 161 536 0.660 161 816
10 0.880 215 710 0.880 215 754

0 500 1000 1500 2000
n

max

1

10

100

t

Figure 5.  Prime prediction accuracy parameter t versus nmax for M  =  106.
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only include a finite number of peaks for which n < nmax; see [26] for details. This leads 
to an algorithm to reconstruct primes in a dyadic interval with high accuracy provided 
that nmax is suciently large and M is not too large. A measure of the accuracy of 
the reconstruction algorithm is given by the ratio t = Nc/Ni, where Nc and Ni are the 
number of correctly predicted primes and incorrectly predicted primes (composite odd 
numbers), respectively. Figure 5 shows that the reconstruction procedure for M  =  106 
becomes highly accurate as the number of Bragg peaks incorporated, as measured by 
nmax, increases.

Discussion

In summary, by focusing on the scattering characteristics of the primes in certain 
suciently large intervals, we have discovered that prime configurations are hyper-
uniform of class II and characterized by an unexpected order across length scales. In 
particular, they provide the first example of an eectively limit-periodic point process, 
a hallmark of which are dense Bragg peaks in the structure factor. The discovery of 
this hidden multiscale order in the primes is in contradistinction to their traditional 
treatment as pseudo-random numbers.

Eective limit-periodic systems represent a new class of many-particle systems with 
pure point diraction patterns that deserve future investigation in physics, apart from 
their connection to the primes. For example, the formulation of other theoretical struc-
tural models of eectively limit-periodic point processes in one and higher dimensions 
and the study of their physical properties are exciting areas for further exploration.
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