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Abstract
Disordered hyperuniform heterogeneousmaterials are new, exotic amorphous states ofmatter that
behave like crystals in themanner in which they suppress volume-fraction fluctuations at large
length scales, and yet are statistically isotropic with no Bragg peaks. It has recently been shown that
disordered hyperuniform dielectric two-dimensional (2D) cellular network solids possess complete
photonic band gaps comparable in size to photonic crystals, while at the same timemaintaining
statistical isotropy, enabling waveguide geometries not possible with photonic crystals.Motivated
by these developments, we explore other functionalities of various 2D ordered and disordered
hyperuniform cellular networks, including their effective thermal or electrical conductivities and
elasticmoduli.We establish themultifunctionality of a class of such low-density networks by
demonstrating that theymaximize or virtuallymaximize the effective conductivities and elastic
moduli. This is accomplished using themachinery of homogenization theory, including optimal
bounds and cross-property bounds, and statisticalmechanics.We rigorously prove that anisotropic
networks consisting of sets of intersecting parallel channels in the low-density limit, ordered or
disordered, possess optimal effective conductivity tensors. For a variety of different disordered
networks, we show that when short-range and long-range order increases, there is an increase in
both the effective conductivity and elasticmoduli of the network.Moreover, we demonstrate that
the effective conductivity and elasticmoduli of various disordered networks derived from
disordered ‘stealthy’ hyperuniform point patterns possess virtually optimal values.We note that the
optimal networks for conductivity are also optimal for the fluid permeability associatedwith slow
viscous flow through the channels as well as themean survival time associated with diffusion-
controlled reactions in the channels. In summary, we have identified ordered and disordered
hyperuniform low-weight cellular networks that aremultifunctional with respect to transport
(e.g., heat dissipation and fluid transport), mechanical and electromagnetic properties, which can
be readily fabricated using 3D printing and lithographic technologies.

1. Introduction

Heterogeneousmaterials consisting of different phases are ideally suited to achieve a broad spectrumof desirable
bulk physical properties by combining the best features of the constituents through the strategic spatial
arrangement of the different phases [1–5].Multifunctional cellular network solids are commonly used inmany
applications due to their light weight and desirable transport,mechanical, optical and acoustic properties
[6–19]. For example, cellular solids are used as structural panels, energy adsorption devices and thermal
insulators [6–8].

Motivated by the hyperuniformity concept that enables a unified classification of ordered and special
disordered structures [20–22], this paper explores themultifunctionality of cellular networkswith varying
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degrees of order (or disorder). The hyperuniformity notionwasfirst introduced in the context ofmany-particle
systemsmore than a decade ago [20]. Hyperuniformmany-particle systems have density fluctuations that are
anomalously suppressed at longwavelengths compared to those in typical disordered point configurations, such
as ideal gases, liquids, and glasses [20, 21].More precisely, amany-particle system is hyperuniform if its structure
factor S(k) [defined in equation (1)] tends to zero as thewavenumber º ∣ ∣k k goes to zero (where k is the
wavevector). Hyperuniform systems include all perfect crystals and quasicrystals, and special disordered
varieties [20, 21]. Disordered hyperuniformmany-particle systems are amorphous states ofmatter that lie
between a crystal and a liquid: they behave like crystals in theway that they suppress density fluctuations at very
large length scales, and yet they are statistically isotropic with noBragg peaks. In this sense, they have a hidden
long-range order that is not visually apparent [20, 21] (see section 2 for precise definitions).

The concept of hyperuniformity was generalized to two-phasematerials [21, 23–25]. A hyperuniform two-
phasemedium is one inwhich the local volume-fraction fluctuations are suppressed at large length scales.
More precisely, a two-phase system is hyperuniform if its spectral density c ( )k

V
(defined in section 2) tends to

zero as k goes to zero. Clearly, any network can be viewed as two-phasemedium consisting of a ‘channel’ phase
distributed throughout somematrix or void phase. Recently, disordered hyperuniform two-phasematerials
were found to possess desirable transport andmechanical properties, andwave-propagation characteristics
[25–27].

Disordered ‘stealthy’hyperuniformdieletric two-dimensional (2D)networks [28, 29] are novel cellular
solids that have recently been shown to possess complete photonic band gaps comparable in size to photonic
crystals, while at the same timemaintaining statistical isotropy, enablingwaveguide geometries not possible with
photonic crystals [28, 29]. Stealthy patterns are not only hyperuniformbut they possess zero-scattering intensity
for a range of wavenumbers around the origin (see section 2 for a precise definition). Disordered stealthy
hyperuniformmaterials can be thought of as an exotic state ofmatter intermediate between a crystal and a liquid
[22]. This photonic study provides a vivid example of a class of disorderedmaterials that has advantages over
ordered counterparts and has led to a flurry of papers on the study of photonic properties of disordered
hyperuniformnetworks [30–34]. It has been suggested [22] that the novel properties associatedwith disordered
stealthy networks is related to the fact that they cannot possess arbitrarily large ‘holes’ (or cells) [35]. In addition,
disordered stealthy hyperuniform two-phasematerials were recently found to possess desirable transport
properties [25, 26].

Motivated by these developments, we explore other functionalities of various 2D ordered and disordered
hyperuniform cellular networks in the low-density limit, including their effective thermal or electrical
conductivities and elasticmoduli. Our overall objective is to investigate how hyperuniformity affects the
effective conductivity and elasticmoduli of the networks, and how close disordered hyperuniform networks,
under the constraint of isotropy, can come to being optimal, i.e., maximal with respect to these physical
properties.We establish themultifunctionality of a class of such networks by demonstrating that they
maximize or virtuallymaximize the effective conductivities and elasticmoduli. This is accomplished using
themachinery of homogenization theory, including optimal bounds and cross-property bounds, and
statisticalmechanics. Bymathematical analogy, all of our results for the effective conductivity apply as well
to the effective dielectric constant and effectivemagnetic permeability [1]. In addition, our results for the
effective conductivity are also optimal for the fluid permeability andmean survival time (see section 7
for details).

For purposes of comparison, we first investigate the effective properties of ordered (periodic)
hyperuniform networks, which include bothmacroscopically isotropic and anisotropic varieties3. Thenwe
study various disordered networks that are statistically isotropic derived fromVoronoi, Delaunay, andwhat
we term as ‘Delaunay-centroidal’ tessellations derived fromhyperuniform and nonhyperuniformpoint
patterns.We employ theoretical and simulation techniques, rigorous bounds, and cross-property bounds to
determine the effective conductivity and elasticmoduli of the networks. To quantify how close the effective
conductivity tensor of an anisotropic network is to being optimal (i.e., maximal), we introduce and compute
the tortuosity tensor t .

We rigorously demonstrate for thefirst time that anisotropic networks consisting of sets of intersecting
parallel channels possess optimal effective conductivity tensors. It is noteworthy that this proof applies to
disordered hyperuniform and nonhyperuniform varieties, where the parallel channels in each set are not equally
spaced.We generallyfind that when short-range and long-range order of aVoronoi, Delaunay, or ‘Delaunay-
centroidal’ network increases, there is an increase in both the effective conductivity and bulkmoduli of the
network, and the shearmoduli in the cases ofDelaunay networks.Moreover, we demonstrate that the effective

3
Macroscopic anisotropy refers to an anisotropic effective property tensor.Macroscopic isotropy refers to an isotropic effective property

tensor.
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conductivity and bulkmoduli of certain disordered networks derived fromdisordered stealthy hyperuniform
point patterns, and the shearmoduli of certainDelaunay networks possess virtually optimal values.

The rest of the paper is organized as follows: in section 2, we provide key definitions and preliminary
discussion. In section 3, we briefly review basic results from homogenization theory that are applied in this
paper. In section 4, we apply the general homogenization theory to low-density network solids and derive
specific results for these structures. In section 5, we determine the effective conductivity and elasticmoduli for
various periodic hyperuniformnetworks, and compute the tortuosity tensors of these networks.We also
provide a rigorous proof that networks consisting of intersecting parallel channels possess optimal effective
conductivity. In section 6, we determine the effective conductivity and elasticmoduli for various disordered
hyperuniform and nonhyperuniform networks. In section 7, we discuss the results and provide concluding
remarks.

2.Definitions and preliminaries

2.1. Point patterns
A statistically homogeneous point pattern in d-dimensional Euclidean space d at number density ρ is
characterized by its n-particle correlation function gn [1]. A periodic point pattern represents a special subset of
point patterns. It is obtained by placing afixed configuration ofN points (whereN�1)within one fundamental
cell (the smallest repeating unit), which is then periodically replicated [36].

Often in practice only lower-order statistics are available for statistically homogeneous point patterns. The
pair correlation function g2(r) is a particularly important quantity, which is defined to be proportional to the
probability offinding a point at a displacement of r away from a given reference point [1]. The structure factor
S(k) is essentially related to the Fourier transformof g2(r); specifically, it is given in terms of the Fourier
transform ˜( )h k of total correlation function h(r)≡g2(r)−1 [1] via

r= +( ) ˜( ) ( )S hk k1 , 1

where k is thewavevector.
A hyperuniformmany-particle system in d-dimensional Euclidean space d at number density ρ is one in

which the structure factor S(k) tends to zero as thewavenumber º ∣ ∣k k tends to zero [20, 21], i.e.,

=


( ) ( )
∣ ∣

S klim 0. 2
k 0

Equivalently, the local number density fluctuation s ( )R2
N

associatedwith a spherical windowof radiusR of
hyperuniform systems growsmore slowly than the volume of that window [20], i.e., slower thanRd. Stealthy
systems are a special hyperuniformity class inwhich the structure factor is identically zero for a range of
wavenumbers around the origin, i.e.,

= <( ) ∣ ∣ ( )S Kk k0 for 0 , 3

where the constantK is the radius of the ‘exclusion sphere’. The ‘stealthiness’ parameter

c =
-
( )

( )
( )M k

d N 1
, 4

which is inversely proportional to the number density, gives ameasure of the relative fraction of constrained
degrees of freedom compared to the total number of degrees of freedom d(N−1) (subtracting out the system
translational degrees of freedom) [37]. HereM(k) is the number of independently constrainedwave vectors in
the exclusion region, andN is the number of points in the system [37]. For 0�χ<1/2, the ground states are
highly degenerate and overwhelmingly disordered [38, 39].Moreover, short-range order (tendency for particles
to repel one another) increases asχ increases; atχ=1/2, the entropically favored ground states undergo a
transition fromdisordered states to crystalline states [38, 39].

2.2. Two-phasematerials
A two-phase randommedium is a domain of spaceV in d that is partitioned into two disjoint regions: a phase 1
regionV1 and a phase 2 regionV2 such thatV1∪V2=V [1]. Themicrostructure of a random two-phase
medium is uniquely determined by the indicator functions  ( )( ) xp associatedwith the two individual phases
(p=1, 2) defined as

 =
⎧⎨⎩( ) ( )( ) p

x
x1, in phase ,

0, otherwise.
5p

3
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For statistically homogeneous two-phasematerials where there are no preferred centers, the two-point
probability function ( )( )S rp

2 measures the probability offinding two points separated by vector displacement r in
phase p [1]. The autocovariance function c ( )r

V
is trivially related to ( )( )S rp

2 via

c fº -( ) ( ) ( )( )Sr r , 6p
p2
2

V

wherefp is the volume fraction of phase p [1]. The spectral density c ( )k
V

is the Fourier transformof the
autocovariance function c ( )r

V
, where k is thewavevector. The spectral density c ( )k

V
can be viewed as the

counterpart of S(k) in the two-phase context.
A hyperuniform two-phasemedium in d-dimensional Euclidean space d is one inwhich the spectral

density c ( )k
V

tends to zero as thewavenumber k tends to zero [21], i.e.,

c =

 ( ) ( )

∣ ∣
klim 0. 7

k 0 V

Equivalently, the local volume-fraction fluctuation s ( )R2
V

associatedwith a spherical windowof radiusR of
hyperuniformmedia decaymore rapidly than the inverse of the volume ofwindow, i.e., faster thanR− d, while
typical disordered two-phasemedia haveR− d decay [23, 40]. Specifically, in the case of disordered hyperuniform
two-phasemedia, the spectral density c ( )k

V
tends to zero in the limit ∣ ∣k 0 with the power-law form [21]

c ~ g ( ) ∣ ∣ ( )k k , 8
V

where γ is a positive exponent (γ>0). Note that themagnitude of γ provides a roughmeasure of short-range
order in the system; as γ tends to infinity, the systems tend towards stealthy two-phasemedia inwhich c ( )k

V
is

identically zero for a range of wavenumbers around the origin, i.e.,

c = < ( ) ∣ ∣ ( )Kk k0 for 0 . 9
V

2.3. Tessellations
Wemappoint patterns in 2DEuclidean space 2 into 2D cellular network structure by using different types of
tessellations of the space into polygonal cells based on the underlying patterns. Thenwe decorate the edges of the
resulting polygons in the tessellations with infinitely thin conducting elastic ‘channels’, as schematically shown
infigure 1. Specifically, we consider three types of tessellations: Delaunay, Voronoi, and ‘Delaunay-centroidal’
tessellations subject to periodic boundary conditions [28]. AVoronoi cell is the region of space closest to a point
than to any other point in the underlying patterns [1]. AVoronoi tessellation is a tessellation of the space by the
Voronoi cells. TheDelaunay tessellation is the dual graph of theVoronoi tessellation. TheDelaunay-centroidal
tessellation is generated by connecting the centroids of the neighboring triangles (which share a common edge)
in theDelaunay tessellation [28].

Figure 1. Schematic illustrations that demonstrate the process ofmapping point patterns into networks subject to periodic boundary
conditions, including one ordered example (top row) and one disordered example (bottom row). Specifically, we partition the space
by using certain tessellations of the space based on certain point patterns and then decorate the edges of the resulting polygons in the
tessellations with infinitely thin conducting ‘channels’. In the top row, an ordered point pattern of triangular lattice ismapped into a
honeycombnetwork via Voronoi tessellation, and in the bottom row, a disordered stealthy point pattern ismapped into a disordered
network via Voronoi tessellation.
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3. Basic results of homogenization theory

Herewe collect basic results fromhomogenization theory of heterogeneousmedia that are central to this paper.
This includes strong-contrast expansions, generalized optimalHashin–Shtrikman structures for anisotropic
media, rigorous effective conductivity bounds and cross-property bounds between the effective conductivity
and effective elasticmoduli.

3.1. Local and homogenized equations
Consider a large two-phase system in d-dimensional Euclidean space d composed of two isotropic phases with
electrical (or thermal) conductivitiesσ1 andσ2. Ultimately, wewill take the infinite-volume limit. The local
scalar conductivity s ( )x at position x is expressible as

 s s s= +( ) ( ) ( ) ( )( ) ( )x x x , 101
1

2
2

where  ( )( ) xp is the indicator function for phase p (p=1, 2) defined in equation (5). The local constitutive
relation,Ohm’s law in the case of electrical conduction or Fourier’s law in the case of thermal conduction, is
given by

s=( ) ( ) ( ) ( )J Ex x x , 11

where ( )J x and ( )E x denote the localflux vector and field (equal to the negative of the gradient of the potential),
respectively. Under steady-state conditions, the localflux andfield respectively satisfy the divergence-free and
curl-free relations:

 =· ( ) ( )J x 0, 12

 ´ =( ) ( )E x 0. 13

Using homogenization theory [1, 41], it can be shown that the effective electric (or thermal) conductivity
second-rank tensor se is determined by the averagedOhm’s (or Fourier’s) law:

sá ñ = á ñ( ) ( ) ( )J Ex x , 14e

where angular brackets denote an ensemble average, á ñ( )J x is the average flux and á ñ( )E x is the average field.

3.2. Exact contrast expansions
Consider amacroscopically anisotropic compositemedium consisting of two isotropic phases with
conductivitiesσp andσq ( ¹p q with p=1, 2, q=1, 2) that is characterized by an effective conductivity tensor
σe. A ‘strong-contrast’ expansion for se was derived in [42] that perturbs around the generalized optimal
Hashin–Shtrikman structures for anisotropicmedia [1]:

ås sb f s s f b b- + - = --

=

¥

{ } · { ( ) } ( )( )dI I I A1 , 15pq p e q e q p pq
n

n
p

pq
n2 2 1

2

where the n-point tensor coefficients ( )An
p are certain integrals over the ( )Sn

p associatedwith phase p and I is the
identity tensor and

b
s s

s s
=

-

+ -( )
( )

d 1
. 16pq

p q

p q

For n=2,

ò f=
W

-
( )

( )[ ( ) ] ( )( ) ( )d

d
d SA t2 1, 2 1, 2 , 17p p

p2 2
2

and for n�3,

ò òf
=

-
W

´ - D ¼

- -





⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟( )

( ) · ( ) ( ) ( ) ( )

( )

( )

d

d
d dn

n n n

A

t t t

1
2

1, 2 2, 3 1, 1, , , 18

n
p

p

n n

n
p

2 1

where

=
-( ) ( )d

r
t r

nn I
19

d

is the dipole–dipole tensor,

p
W =

G +
( )

( )
( )d

d

d1 2
20

d 2
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is the total solid angle contained in a d-dimensional sphere, and

D =

¼ ¼ --




   


( ) ( )
( ) ( )

( ) ( ) ( )

( )( )

( ) ( )

( ) ( )

( ) ( ) ( )

S S

S S

S n S n S n n

1, 2 2 0

1, 2, 3 2, 3 0

1, , 2, , 1,

21n
p

p p

p p

n
p

n
p p

2 1

3 2

1 2

is a position-dependent determinant associatedwith phase p.
Central to this paper is the two-point tensor parameter ( )A p

2 , whichwe note generally does not vanish for

statistically anisotropicmedia, since the two-point function ( )( )S rp
2 depends on the distance = ∣ ∣r r as well as the

orientation of the vector r . Second, it is the only tensor parameter in expansion (15) that is independent of the
phase p, and hencewe define

º = ( )( ) ( )A A A 222
1

2
2

Third, we observe that formacroscopically isotropicmedia

= ( )A 0, 23

sinceA is traceless, i.e., TrA=0. It is noteworthy that the two-point tensorA also arises in strong-contrast
expansions for the effective stiffness tensor [43].

3.3. Rigorous bounds and optimality
Rigorous bounds on the effective conductivity tensor that incorporate up to n-point correlation functions are
referred to as n-point bounds [1]. The following are two-point anisotropic generalizations of theHashin–
Shtrikman bounds on se whenσ2�σ1:

 s s s ( )( ) ( ), 24L e U
2 2

where

s s s s s
s s

f
= á ñ + - +

-
-⎡

⎣⎢
⎤
⎦⎥( ) · ( ) ( )( ) Ia a , 25L

2
2 1

2
2 1

1 2

2
2

1

s s s s s
s s

f
= á ñ + - +

-
-⎡

⎣⎢
⎤
⎦⎥( ) · ( ) ( )( ) Ia a , 26U

2
2 1

2
2 2

2 1

1
2

1

and

f f= -[ ] ( )
d

a A I
1

272 1 2

is a two-point tensor parameter, which arises in the so-called ‘weak-contrast’ expansion for se [42] and is seen to
be trivially related toA and hence obeys the trace condition

f f= - ( )aTr . 282 1 2

These two-point upper and lower bounds have been derived by a variety ofmethods.Willis [44]first derived
them for d=3 using the anisotropic generalizations of theHashin–Shtrikman principles. Sen andTorquato
[42] obtained them in arbitrary dimension d using themethod of Padé approximants [45]. Importantly, the
bounds (25) and (26) are achieved by certain oriented singly coated space-filling ellipsoidal assemblages [46–48]
(see figure 2) aswell asfinite-rank laminates [48]. Hence, these bounds are optimal given the phase volume
fraction and the two-point information contained in a2. For all optimal structures, one of the phases is generally
a disconnected, dispersed phase in a connectedmatrix phase, except in the trivial instance inwhich the dispersed
phasefills all of space. These two-point bounds are exact to second order in the phase conductivity difference,
i.e., for ¹p q, we have

s s f s s
s s

s

s s

s
= + - +

-
+

-⎛
⎝
⎜⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟( )

( )
( )I I a . 29e q p p q

p q

q

p q

q

2

2

3

For statistically anisotropicmicrostructures inwhich ( )( )S rp
2 possesses ellipsoidal symmetry (e.g., oriented

similar ellipsoidal inclusions in amatrix with nematic-liquid-crystal structure), the aforementioned two-point
parameters are given by

* *f f f f= - = -( ) ( )dA I A a A, , 301 2 2 1 2

where *A is the symmetric depolarization tensor of a d-dimensional ellipsoid, which in the principal axes frame
has diagonal components or eigenvalues (denoted by * = ¼A i d, 1, ,i , no summation implied) given by the
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elliptic integrals

* ò


=
+ +

= ¼
=

¥

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )
( )A

a dt

t a t a
i d

2
, 1, , , 31i

j

d
j

i j

d
j

1 0 2
1

2

where ai is the semiaxis of the ellipsoid along the xi direction. The depolarization tensor has the property that its
trace is unity, i.e.,

* = ( )ATr 1. 32

In the 2D case (ellipse) of aspect ratioα=a2/a1, (31) can be simplified to yield the exact relation

*

a
a

a

=
+

+

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( )A

1
0

0
1

1

. 33

From these results, we see that for circles (α=1)

* *= = ( ) ( )A A
1

2
, circles 3411 22

Figure 2.Coated-ellipsoid assemblages consisting of oriented composite ellipsoids that are composed of a ellipsoidal core of one phase
that is surrounded by a concentric ellipsoidal shell of the other phase such that the fraction of space occupied by the core phase is equal
to its overall phase volume fraction [46–48]. The aspect ratio of the composite ellipsoid is set by the eigenvalues of the two-point tensor
a2. The composite ellipsoids fill all space, implying that there is a distribution in their sizes ranging to the infinitesimally small.
Assuming that the red region constitutes themore conducting phase and the blue region constitutes the less conducting phase, the top
and bottompanels show themicrostructures that are exactly achieved by the lower bound (25) and upper bound (26), respectively.
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for needle-shaped inclusions aligned along the x2-axes (a = ¥) and x1-axes (a = 0), respectively, we have

* *= = ( ‐ ) ( )A A x1, 0, needles along the axes 3511 22 2

and

* *= = ( ‐ ) ( )A A x0, 1, needles along the axes . 3611 22 1

It is noteworthy, but not surprising in light of the aforementioned results, that the lower bound (25) is exact
for a dilute concentration of oriented ellipsoids (f2= 1) in amatrix of phase 1, i.e.,

* s s s s
s s

s
f f= + - +

-
+

-⎡
⎣⎢

⎤
⎦⎥( ) · ( ) ( ) ( )I I I A . 37e 1 2 1

2 1

1

1

2 2
2

This relation applies for any size distribution of the ellipsoids, i.e., it is not limited to identical ellipsoids.
Whenever the two-phase system ismacroscopically isotropic, i.e., s s= Ie e and f f= - da I2 1 2 , whereσe is

a scalar quantity, the two-point anisotropic bounds (25) and (26) reduce to the d-dimensional Hashin–
Shtrikman bounds onσe for two-phase isotropicmedia withσ2�σ1:

 s s s ( )( ) ( ), 38L e U
2 2

where

s s
f f s s
s s s f

= á ñ -
-

+ -
( )
( )

( )( )

d
, 39L

2 1 2 2 1
2

1 2 1 1

s s
f f s s
s s s f

= á ñ -
-

+ -
( )
( )

( )( )

d
. 40U

2 1 2 2 1
2

2 1 2 2

TheHashin–Shtrikman bounds are realized by the singly coated d-dimensional sphere assemblages [1, 41],
second-rank laminates [1, 41], and single-scale Vigdergauz constructions [49, 50]. Accordingly, because the
bounds are attainable by certainmicrostructures, they are the best possible bounds on the effective conductivity
ofmacroscopically isotropic two-phase composites given volume-fraction information only.

3.4. Cross-property conductivity-elasticmoduli bounds
Formacroscopically isotropic two-phasemedia, Gibiansky andTorquato [51, 52] derived rigorous cross-
property bounds that relate the effective elasticmoduli to the effective conductivity. In the special case of two-
phasemedia consisting of pores or cracks of arbitrary shape and size distributed throughout a solidmaterial,
these formulas simplify considerably [51, 52]. Let the bulkmodulus, shearmodulus andYoung’smodulus of the
solid phase be denoted byK,G andE, respectively. Denote byKe,Ge andEe the effective bulkmodulus, shear
modulus andYoung’smodulus, respectively. Note that formacroscopically isotropic structure, there are only
two independent elasticmoduli. For example, givenKe andGe of a structure, any other quantities such asEe can
be derived. The general cross-property bounds that rigorously link the the effective elasticmoduli to the effective
conductivity in 2D are given by
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In the low-density asymptotic limit, i.e.,f=1, one can assume that s s   K K G G1, 1, 1e e e ,
andEe/E=1. Under such conditions, the cross-property bounds (41)–(43) reduce to
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respectively. Here ν is the Poisson’s ratio and in 2D is bounded according to

 n- ( )1 1. 47

Equations (41)–(46) only apply to statistically isotropic structures or statistically anisotropic structures with
3- or 6-fold rotational symmetry. Note thatmeasurement of the elasticmoduli in conjunctionwith the cross-
property bounds (41)–(46) allows one to obtain a lower bound on the effective conductivity. Similarly,
conductivity information and bounds (41)–(46) enables one to bound the elasticmoduli from above.However,
effective shearmodulusGe and effective Young’smodulus Ee of certain networks, such as honeycomb-like (e.g.,
Voronoi andDelaunay-centroidal networks) and square-like ones, are far fromoptimal, i.e., far from the
corresponding upper bounds (42), (43), (46), and (47) due to the bendingmodes of the structures [18, 19, 53].
Subsequently, wewill only employ the upper bounds to estimateGe andEe for the triangular networks.

4. Application to low-density network solids

Of particular interest in this paper are applications of the two-point anisotropic bounds (25) and (26) to low-
density networks. Assuming that phase 2 is the low-density,more conducting phase (i.e.,f2=1 and s s2 1),
these bounds become

*s s s s
s s

s
f+ - -

- -⎡
⎣⎢

⎤
⎦⎥( ) · ( ) ( )I I I A , 48e 1 2 1

1 2

1

1

2

*s s s s
s s

s
f+ - -

-⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )I I A , 49e 1 2 1

2 1

2
2

where *A is defined in equation (31).
Importantly, wewill see that there are anisotropic network structures in two and three dimensions that

attain the upper bound (26) and hence are optimal. Elsewhere it was shown thatmacroscopically isotropic 2D
ordered networks with 4-fold rotational symmetry (e.g., square tessellation) and 6-fold rotational symmetry
(e.g., honeycomb and equilateral-triangular tessellations) attain the upper bound and hence are optimal [53]. In
these instances, * f f=A 21 2 , and the upper bound reduces to the correspondingHashin–Shtrikman upper
bound, as obtained from (40).

In the extreme case inwhichσ1=0, upper bound (26) reduces to the following simple form:

s s
f

fs= +
⎛
⎝⎜

⎞
⎠⎟ ( )( ) A1

2
1 . 50Ue

2

Henceforthwhen referring to the properties of the solid phase, we drop the subscripts so thatf≡f2 and
σ≡σ2. Note that the lower bound (49) is trivially zero because it corresponds to amicrostructure inwhich the
perfectly insulting phase 1 is connected (see figure 2). Formacroscopically isotropicmedia, the two-point tensor
coefficient A vanishes, as stated in equation (23), and the upper bound (50) reduces to theHashin–Shtrikman
bound s( )

U
2 on the scalar effective conductivityσe:

s fs= ( )( ) 1

2
. 51U

2

In the subsequent sections, wewill focus on this extreme case.

5.Network analysis

In this section, we develop a general scheme to compute the effective conductivity tensor se of 2Dordered and
disordered cellular network structures inwhich one phase consists of connected infinitesimally thin channels
(henceforth called the ‘channel’ phase) and the other is a disconnected and insulating ‘void’ phase.We also
exactly evaluate the two-point tensor A, defined by (22), for a certain class of such networks.

5.1. Effective conductivity tensor
Herewe denote the conductivity and volume fraction of the ‘channel’ phase byσ andf, respectively. To
determine the effective conductivity se, we consider the conduction problem in a fundamental cell (i.e., smallest
periodic repeat unit). For our purposes, we consider rectangular fundamental cells.We set the potentials (or
temperatures) at the two opposing boundaries in the xi direction to beTA andTB, and the applied fieldE0, which
is equal to á ñEi (the average of localfield in the xi direction), is given by
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= á ñ = -
- ( )E E

T T

L
, 52i

B A

i
0

where = ∣ ∣E E0 0 , and Li is the side length of the fundamental cell in the xi direction. In the orthogonal direction,
we apply periodic boundary conditions.We denote themagnitude of theflux by º ∣ ∣J J . For example, if we
consider the conduction problem in the x1 direction, the boundary conditions are given by

+ =
+ = -

⎫⎬⎭
( ) ( )

( ) ( ) ( )T x x L T x x
T x L x T x x E L

, ,
, ,

. 531 2 2 1 2

1 1 2 1 2 0 1

As a general guideline, when considering an applied field in one of the orthogonal directions, it is convenient to
choose the fundamental cell so that it possesses reflection symmetry with respect to this direction, if possible.

Figure 3 schematically shows the general setup for the conduction problem in a fundamental cell, which, for
purposes of illustration, show an applied fieldE0 in the x1-direction. The lengths of the fundamental cell in the
x1- and x2-directions are denoted by L1 and L2, respectively.

The effective conductivity tensor is determined by the averagedOhm’s (Fourier’s) law given by relation (14).
Since our coordinate system is alignedwith the principal axes frame, thenwe need only consider the diagonal
components of the effective conductivity tensor.We denote by (σe)II the II-component of the effective
conductivity tensor (no summation implied). Thus, according to equations (14) and (52), we have

s sá ñ = á ñ = -
-( ) ( ) ( )J E

T T

L
. 54i e II i e II

B A

i

where

ò òá ñ =
W

=
W

( ) ( ) ( )J J x J xdV dV
1 1

, 552

W = L L1 2 is the volume of the fundamental cell, and ò dV2 denotes the integral over the space occupied by the
channel phase. Applying equation (11) along the conduction path between opposing boundaries in the
xi-direction, we get

ò s= - -( ) ( )J dl T T , 56
A

B

B A

The path integral equation (56) is the same for any path connecting the two opposing boundaries, which should
not contain ‘dead ends’, defined to be channels that are not topologically connected to boundaries or channels
with zero flux that are not perpendicular to the applied field. From equations (54) and (56), we get

ò
s

s
s

= = á ñ( ) ( ) ( )E
J dl

L
J , 57e II

e II A

B

i
i0

Figure 3.General framework of the conduction problem in a fundamental cell (which in this case is in the x1 direction). The lengths
of the fundamental cell in the x1 and x2 directions are denoted by L1 and L2, respectively. The potentials (or temperatures) at the
two opposing boundaries in the x1 direction are set to beTA andTB, and the corresponding applied field in the x1 direction is
denoted by E0.
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Therefore, s( )e II is

ò

s
s

=
á ñ( ) ( )
J L

J dl
. 58e II i i

A

B

Note that in the limit f  0 (i.e., the thickness of the channels goes to 0), themagnitude offlux J is piecewise
constant for such cellular network structures. Furthermore, for structures consisting of piecewise straight
channels, theflux J is piecewise constant. For any cellular network, letting Jm,n represent the (signed)flux
flowing fromnodem to n (where the concept of a node schematically shown infigure 2), Ohm’s andKirchhoff’s
laws can bewritten in a discrete form,

s= -( ) ( )J T T H , 59m n m n m n, ,

and similarly, the divergence-free condition (12) can bewritten as

å = " ( )J m0 . 60
n

m n,

HereHm,n is the generalized adjacencymatrix of the graph formed by the cellular network.Hm,n takes the value
1.0 / am,n, where am,n is the length of the channel connecting nodesm and n if there exists such a channel, and 0
otherwise. By solving equations (59) and (60) and taking into account the symmetry of the cellular network
structure, we obtain themagnitude of the flux in each channel within the fundamental cell, which is then used to

compute á ñJi and ò J dl
A

B
. Finally, the II-component of the effective conductivity (σe)II tensor is determined

from equation (58).
To quantify howmuch the effective conductivity se of a certain structure deviates from the upper bound

s( )
U
2 , or how ‘tortuous’ the conduction path is, we introducewhat we call the ‘tortuosity’ tensor4 t :

t
t

t
=

⎡
⎣⎢

⎤
⎦⎥ ( )0

0
. 611

2

Here τI (I=1, 2) denotes the Ith eigenvalue of t and is given by

s st = ( ) ( ) ( )( ) , 62UI II e II
2

where s( )( )
U II
2 and s( )e II are the Ith eigenvalues of s( )

U
2 and se, respectively. Formacroscopically isotropic

structures, the tortuosity reduces to a scalar quantity τ. Note that for optimal structures, the eigenvalues
τ1=τ2=1.

Using these procedures, we first determine the effective conductivities of ordered (periodic) hyperuniform
networks shown infigure 4, which include bothmacroscopically isotropic and anisotropic varieties. The
computed effective conductivity and tortuosity tensors of these structures are listed in table 1.Note that among
all of themacroscopically isotropic structures investigated, the honeycombnetwork (figure 4(a)), triangular
network (figure 4(b)), kagomé network (figure 4(c)), and square network (a special case of the rectangular and
rhombic networks infigures 4(h) and (i)) possess the optimal value of the effective conductivity, i.e., they achieve
the upper bound (51) [55]. The structures shown infigures 4(d)–(f), and (g), on the other hand, possess
suboptimal effective conductivities. Note that the network consisting of touching circles shown infigure 4(g)
possesses ‘dead ends’, a structural feature that leads to a suboptimal effective conductivity. Indeed, this network
possesses the lowest effective conductivityσe, or the highest scalar tortuosity τ, among all of the networks
investigated in this study.

5.2. Effective conductivity of intersecting parallel-channel cellular structures
Wenow consider cellular structures that are constructed by superposing ( )N N 2 sets of intersecting parallel
channels oriented in directions with polar anglesψ1,ψ2, ...,ψN, respectively, as schematically shown infigure 5.
We stress that the parallel channels in each set are not required to be equally spaced, and thus the networks
discussed here include disordered ones (seefigure 5(b) for an example). Note that the rectangular and rhombic
networks shown infigures 4(h) and (i) are special examples of this type of structures. The relative volume
fraction of the ith set of channels is denoted by ci (i=1, 2,K,N, and å == c 1i

N
i1 ), where ci=f2,i/f andf2,i is

the volume fraction of the ith set of channels.
For such an intersecting parallel-channel network, we can compute the effective conductivity se exactly.

Specifically, application of the procedure described in section 5.1 to such a general structure yields the following
effective conductivity se:

4
Traditionally tortuosity has been defined to be a purely geometric scalar quantity: the ratio of the average length of thefluid paths and the

geometrical length of the sample [54]. Our new tortuosity tensor is distinguished from earlier definition in that it is based on the transport
behavior (not purely geometrical features) and anisotropicmedia.
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5.3.Demonstration of optimality for intersecting parallel-channel cellular structures
Wenowprove that the effective conductivity tensor (63) for any intersecting parallel-channel network is optimal
by showing that it corresponds to the the upper bound s( )

U
2 on se.We begin by computing the two-point tensor

coefficientA of such a network, which is explicitly given by

ò òp
qc q

q q
q q

=
-d d

p



¥ ⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( ) ( )
( )dr

r
d rA

1
lim ,

cos 2 sin 2
sin 2 cos 2

, 64
0 0

2

whereχ(r, θ)=S2(r, θ)−f2 is the autocovariance function of the cellular network, and S2(r, θ) is the two-point
correlation function of the channel phase. The autocovariance functionχ(r, θ) can be decomposed into two
parts:

Figure 4. Illustrations of various periodic cellular network structures and their fundamental cells. The fundamental cells are indicated
in black. The lengths of the fundamental cell in the x1 and x2 directions are denoted by L1 and L2, respectively. In certain cases where
L1=L2, we simply use L to denote both lengths. (a)Honeycombnetwork. (b)Triangular network. (c)Kagoménetwork. (d)Octagonal
network. (e) Snub square network. (f)Overlapping dodecagonal network. (g)Triangular lattice of circles. (h)Rectangular network.
Note that square network is a special case of rectangular network, where the aspect ratioα=1. (i)Rhombic network. Note that square
network is a special case of rhombic network, where L1=L2 andβ=π/2.
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where thefirst part corresponds to the two-point correlation between channels in the same set, and the second
part corresponds to the two-point cross-correlation between channels in different sets, andf2,i is the volume
fraction the ith set of channels. Since the two-point cross-correlation term q f f-( )S r, 2ij i j2, 2, 2, depends only
on the distance r, i.e., independent of the orientation θ, the contribution toA from the second part is 0. By
adding up the contributions toA from the self-correlation of each individual set of intersecting parallel channels,
wefind
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Wecan diagonalize the abovematrix to obtain the eigenvalues forA once the relative volume fractions and
orientations of each set of intersecting parallel channels are given. In general, the ‘superposition’ of sets of
intersecting parallel channels produces amacroscopically anisotropic structure, and the correspondingA is
not 0.

By substitutingA, given by equation (66), into equation (50), we see that the upper bound s( )
U
2 for these

structures is exactly the same as se given by equation (63). Thus, we have rigorously demonstrated that
anisotropic structures consisting of sets of intersecting parallel channels achieve the two-point anisotropic
generalizations of theHashin–Shtrikman bound (26) on se, regardless of whether they are ordered or
disordered, hyperuniformor nonhyperuniform.

In addition, we note that in certain special cases, where theN sets of intersecting parallel channels have
identical relative volume fraction, i.e., = = ¼( )c i N1, 2, ,i N

1 , and the channels are superpositioned in away

such that the overall structure possessesN-fold rotational symmetry, we can show thatA=0. Specifically,
without loss of generality, we can have one set of channels alignedwith the horizontal axis, and the other sets

oriented in directions with polar angles y = p p -( ), ...,
N

N

N

1 , respectively, withA now given by

Table 1.Effective conductivity tensor se and tortuosity tensor t of
various periodic network structures as shown infigure 4. Note that the
honeycomb, triangular, kagomé, square, rectangular and rhombic
networks possess the optimal values of the effective conductivity.
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Thus, the resulting structure ismacroscopically isotropic.

5.4. Cross-property relations
For periodic cellular structures with 3-, 4- or 6-fold rotational symmetry, the cross-property bound (44) allows
us to obtain upper bounds on the effective bulkmoduli given themeasurement of the effective conductivity of
the structures. Interestingly, whenever the effective conductivityσe of certain structure is optimal, so are the
effective bulkmoduli. The results are summarized in table 2.Note that the square, honeycomb, and kagomé
networks possess optimal effective bulkmoduli, i.e., they achieve the upper bound (44).

5.5. Results for arbitrary phase contrast
It should not go unnoticed thatmany of the aforementioned results are straightforwardly extended to cases in
which the void ormatrix phase has nonzero phase properties. In such instances, the lower bounds (48)no longer
vanish.Note that whenever the network structure is optimal (i.e.,maximizes the effective conductivity), the
upper bound (49) on effective conductivity is an exact result (i.e., achieved by certain structures) for arbitrary

Figure 5. Schematics of ordered (a) and disordered (b) cellular structures consisting of three sets of intersecting parallel channels
oriented in directionswith polar anglesψ1,ψ2 andψ3, respectively.We stress that the parallel channels in each set are not required to
be equally spaced, and thus the networks discussed here include disordered varieties.
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phase contrast. For example, infigure 6, we plot the effective conductivity for the optimal case of the
aforementioned oriented singly coated space-filling ellipsoidal assemblages shown infigure 2with an aspect
ratioα=5.0 as a function of the volume fraction of themore conducting phasef2 at phase contrast ratios
σ2/σ1=2.0, 5.0, and 10.0.

6. Effective conductivity and elasticmoduli of hyperuniform andnonhyperuniform
disordered networks

In this section, we determine the effective conductivity and elasticmoduli of various statistically isotropic
disordered hyperuniform and nonhyperuniformnetworks. Our goal is to investigate howhyperuniformity
affects the effective conductivity and elasticmoduli, and how close these effective properties of disordered
hyperuniformnetworks can come to being optimal.

6.1.Mapping disordered point patterns to disordered networks
Wemap various 2Ddisordered nonhyperuniform and hyperuniformpoint patterns into 2D cellular network
structures by the three types of tessellationsmentioned in section 2.3: Delaunay, Voronoi andDelaunay-
centroidal tessellations.We then compute the effective conductivities of the networks. These point patterns
include nonhyperuniform and hyperuniformones in square domains subject to periodic boundary conditions.

Figure 6.Principal components of the effective conductivity (σe)11 (a) and (σe)22 (b) of oriented singly coated space-filling ellipsoidal
assemblages shown infigure 2with an aspect ratioα=5.0 as a function of the volume fraction of themore conducting phasef2 at
phase contrast ratiosσ2/σ1=2.0, 5.0, and 10.0, as computed from equation (49). The effective conductivity of this anisotropic
structure possesses optimal values.
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For nonhyperuniformpoint patterns, we consider Poisson point patterns (which are uncorrelated on all length
scales) and those associatedwith the centroids of equal-sized hard disks in packings generated by the random-
sequential-addition (RSA) process [56]withN=100 points in each pattern.We consider hyperuniformpoint
patterns associatedwith the centroids of equal-sized hard disks inmaximally random-jammed (MRJ) packings
[57]withN=100 points in each pattern, and various disordered stealthy hyperuniformoneswith differentχ
values [38, 39] andN=150 points in each pattern. These stealthy point patterns are generated using the
procedure described in [39]. Specifically, an optimization objective function that targets the structure factor S(k)
to be exactly zero for a range of small wavenumbers is employed, which guarantees the stealthiness of the
resulting point patterns. Asmentioned above, when 0<χ<0.5, the point pattern is disordered and
henceforthwewill employ point patternswithχ values in this range. Specifically, we pick threeχ values: 0.3, 0.4,
and 0.49 [38, 39].

The three types of constructed cellular network structures corresponding to Poisson, RSA andMRJ point
patterns that are not stealthy are shown infigure 7, while those corresponding to disordered stealthy
hyperuniformpoint patterns are shown infigure 8.Note that in thoseVoronoi andDelaunay-centroidal
networks, the underlying point patterns are colored in red, and the conducting ‘channels’ are colored in blue. In
thoseDelaunay networks, the points in the underlying point patterns are just the vertices of the triangles, which
are colored in blue. Asχ increases, the fraction of hexagonal cells compared to all other possible polygonal cells
in the corresponding networks increases, which is amanifestation of the increasing short-range order of the
networks. Indeed, atχ=0.49, the average fraction of hexagonal, pentagonal, and heptagonal cells for the
Voronoi andDelaunay-centroidal networks (averaged over ten configurations) is equal to 96.8%, 1.6% and
1.6%, respectively. Observe that all the cellular network structures considered here are statistically isotropic by
construction, and hence their effective conductivity is a scalar, whichwe denote byσe.Moreover, we conjecture
that the networks derived from the stealthy hyperuniform point patterns are also stealthy and hyperuniform,
which is based on strong numerical evidence from a previous photonic study [29]. However, we note that in a
rigorousmathematical sense, this is still an open question, as we discuss in section 7.

6.2. Effective conductivity
Herewe compute the effective conductivityσe and tortuosity τ of these disordered statistically isotropic network
structures by computationally solving the equation described in section 5.1. For each system, we average over ten
configurations. The results are summarized in table 3.

It is noteworthy that Poisson networks have the lowest effective conductivity due to the complete absence of
order on all length scales. On the other hand, for those point patterns associatedwith hard-disk packings, as the
packings approach jamming and the point patterns tend toward hyperuniform states, the effective conductivity
of the corresponding network structures increases.Moreover, for those point patterns that are indeed
hyperuniform and stealthy, asχ increases, i.e., the short-range order of the corresponding networks
dramatically increases [39], the effective conductivity of the corresponding network increases. Interestingly,
whenχ=0.49, the corresponding statistically isotropic networks are nearly optimal in terms of their effective
conductivity, i.e., achieve the upper bound (51). These observations suggest that for disordered statistically
isotropic Voronoi, Delaunay, and ‘Delaunay-centroidal’ cellular network structures to achieve optimal effective
conductivity, both short-range and long-range orders are necessary. These networks are ideal for heat
dissipation aswell as electrical andfluid (see section 7) transport through the channel phase. In addition, among

Table 2.Upper bounds on the effectivemoduli
Ke of certain periodic network structures in
figure 4, which are scaled bymodulusK, and
volume fractionf of the ‘channel’ phase. It is
noteworthy that the square, honeycomb and
kagomé networks possess optimalKe.

Network Ke/(Kf)
Honeycomb 0.5(1−ν)
Triangular 0.5(1−ν)
Kagomé 0.5(1−ν)
Square 0.5(1−ν)
Octagonal n-+ ( )13 2 2

12

Snub square n-+ ( )14 2 3

15

Overlapping dodecagonal n-+ ( )12 3

8

Triangular lattice of circles n-
p

( )19

2 2
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the three types of tessellations investigated here, theVoronoi tessellations generally possess higher effective
conductivity than theDelaunay andDelaunay-centroidal tessellations of the same point pattern, except for the
Poisson point pattern.

6.3. Cross-property relations
The disordered networks investigated here are elastically isotropic and hence are characterized by two
independentmoduli. Herewe compute the upper bounds on the effective bulkmoduli of these structures using
the cross-property bound (44) and the shearmoduli of theDelaunay networks using the bounds (45) and (46).
The results are summarized in table 4. It is noteworthy that similar to the conduction problem, as both short-
range and long-range order of the network increases, the effective bulkmoduli of all the networks and the shear
moduli of theDelaunay networks increase. Specifically, whenχ=0.49, the corresponding statistically isotropic
stealthy networks possess nearly optimal effective bulkmoduli, and theDelaunay ones among thempossess
nearly optimal effective shearmoduli as well.

Figure 7.Representative disordered nonstealthy cellular network structuresmapped fromvarious point patterns. There areN=100
points in each underlying point pattern.Note that in those Voronoi andDelaunay-centroidal networks, the underlying point patterns
are colored in red, and the conducting ‘channels’ are colored in blue. In thoseDelaunay networks, the points in the underlying point
patterns are just the vertices of the triangles, which are colored in blue. (a)Delaunay network of Poisson point pattern. (b)Voronoi
network of Poisson point pattern. (c)Delaunay-centroidal network of Poisson point pattern. (d)Delaunay network of RSApoint
pattern. (e)Voronoi network of RSApoint pattern. (f)Delaunay-centroidal network of RSApoint pattern. (g)Delaunay network of
MRJ point pattern. (h)Voronoi network ofMRJ point pattern. (i)Delaunay-centroidal network ofMRJ point pattern.
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7. Conclusion anddiscussion

In this work, we considered and constructed various 2Dordered and disordered low-density cellular networks,
and determined their effective conductivities, tortuosity tensors, and elasticmoduli. In particular, we
investigated periodic hyperuniformnetworks including bothmacroscopically isotropic and anisotropic
varieties, as well as various disordered statistically isotropic networks derived fromVoronoi, Delaunay, and
‘Delaunay-centroidal’ tessellations based on hyperuniform and nonhyperuniformpoint patterns.We observed
that the presence of ‘dead ends’ in a network leads to suboptimal effective conductivity.We also demonstrated
for thefirst time that intersecting parallel-channel cellular networks, including disordered hyperuniform and
nonhyperuniform varieties, possess optimal effective conductivity tensors.Wefind that the effective
conductivities and elasticmoduli of the disorderedVoronoi, Delaunay, and ‘Delaunay-centroidal’ networks
correlated positively with the short-range and long-range order of the networks, which is consistent with the fact
that Poisson networks have the lowest effective properties due to the absence of any order.Moreover, we found
that certain disordered networks derived fromdisordered stealthy hyperuniformpoint patterns withχ values
just below 1/2maximize heat (or electrical) conduction/dissipation and fluid transport through the solid phase,

Figure 8.Representativedisordered stealthy cellular network structuresmapped fromvarious point patterns. There areN=150points
in eachunderlyingpoint pattern.Note that in thoseVoronoi andDelaunay-centroidal networks, theunderlying point patterns are colored
in red, and the conducting ‘channels’ are colored inblue. In thoseDelaunay networks, the points in the underlyingpoint patterns are just
the vertices of the triangles,which are colored inblue. (a)Delaunaynetwork of stealthy point patternwithχ=0.3. (b)Voronoinetwork
of stealthy point patternwithχ=0.3. (c)Delaunay-centroidal network of stealthy point patternwithχ=0.3. (d)Delaunay network
of stealthy point patternwithχ=0.4. (e)Voronoinetworkof stealthypoint patternwithχ=0.4. (f)Delaunay-centroidal network of
stealthy point patternwithχ=0.4. (g)Delaunaynetworkof stealthy point patternwithχ=0.49. (h)Voronoi network of stealthy point
patternwithχ=0.49. (i)Delaunay-centroidal networkof stealthy point patternwithχ=0.49.
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and are capable of sustaining external stress withminimal amount of deformation. TheDelaunay ones among
thempossess nearly optimal effective shearmoduli as well. In summary, the effective transport and elastic
properties of disordered networks derived from stealthy point patterns generally improve as the short-range
order increases due to an increasing value ofχwithin the disordered regime (χ<1/2). This is also supported by
a previous study [28] inwhich the size of the photonic band gap of a disordered stealthy hyperunuformdielectric
networkwas shown to be proportional toχ.

It should not go unnoticed that all of the results that we have obtained for the effective conductivity apply as
well to thefluid permeability associatedwith slow viscousflow through the channels. This is because the Stokes-
flow equations forfluid transport in networks in the low-density limit (f→ 0) become identical to the
conduction governing equations [1]. Thus, networks that are optimal with respect to the effective conductivity
are also optimal with respect to thefluid permeability.Moreover, because the fluid permeability has been shown
to be directly linked to themean survival time associatedwith diffusion-controlled reactions in channels [58],
our results for the effective conductivity are also optimal for themean survival time.

Table 3.Effective conductivityσe (scaled by the conductivity σ and volume fractionf of the conducting ‘channels’) and tortuosity τ of
various isotropic disordered hyperuniform and nonhyperuniformnetworks. The results are averaged over ten configurations for each
system.

Point pattern Tessellation σe/(σf) τ

Poisson Delaunay 0.464 3 1.076 9

Poisson Voronoi 0.447 3 1.117 8

Poisson Delaunay-centroidal 0.449 0 1.113 6

RSA Delaunay 0.486 0 1.028 8

RSA Voronoi 0.490 7 1.019 0

RSA Delaunay-centroidal 0.485 9 1.029 0

MRJ Delaunay 0.488 7 1.023 1

MRJ Voronoi 0.497 1 1.005 8

MRJ Delaunay-centroidal 0.489 0 1.022 5

Stealthywithχ=0.3 Delaunay 0.469 8 1.064 3

Stealthywithχ=0.3 Voronoi 0.484 2 1.032 6

Stealthywithχ=0.3 Delaunay-centroidal 0.467 7 1.069 1

Stealthywithχ=0.4 Delaunay 0.475 1 1.052 4

Stealthywithχ=0.4 Voronoi 0.489 6 1.021 2

Stealthywithχ=0.4 Delaunay-centroidal 0.476 2 1.050 0

Stealthywithχ=0.49 Delaunay 0.493 7 1.012 8

Stealthywithχ=0.49 Voronoi 0.498 4 1.003 2

Stealthywithχ=0.49 Delaunay-centroidal 0.495 2 1.009 7

Table 4.Upper bounds on the effectivemoduliKe,Ge, andEe of the various isotropic disordered networks summarized in table 3 and shown
infigures 7 and 8.Here the effective properties are scaled by the correspondingmoduliK,G,E, and volume fractionf of the ‘channel’ phase.
The results are averaged over ten configurations for each system. The results forGe andEe are only shown forDelaunay networks. Note that
disordered statistically isotropic stealthy cellular networkswithχ=0.49 possess nearly optimal bulkmoduli.

Point pattern Tessellation Ke/(Kf) Ge/(Gf) Ee/(Ef)

Poisson Delaunay 0.464 3(1−ν)  0.232 2(1+ν) 0.309 5

Poisson Voronoi 0.447 3(1−ν) 
Poisson Delaunay-centroidal 0.449 0(1−ν) 
RSA Delaunay 0.486 0(1−ν)  0.243 0(1+ν) 0.324 0

RSA Voronoi 0.490 7(1−ν) 
RSA Delaunay-centroidal 0.485 9(1−ν) 
MRJ Delaunay 0.488 7(1−ν)  0.244 4(1+ν) 0.325 8

MRJ Voronoi 0.497 1(1−ν) 
MRJ Delaunay-centroidal 0.489 0(1−ν) 
Stealthywithχ=0.3 Delaunay 0.469 8(1−ν)  0.234 9(1+ν) 0.313 2

Stealthywithχ=0.3 Voronoi 0.484 2(1−ν) 
Stealthywithχ=0.3 Delaunay-centroidal 0.467 7(1−ν) 
Stealthywithχ=0.4 Delaunay 0.475 1(1−ν)  0.237 6(1+ν) 0.316 7

Stealthywithχ=0.4 Voronoi 0.489 6(1−ν) 
Stealthywithχ=0.4 Delaunay-centroidal 0.476 2(1−ν) 
Stealthywithχ=0.49 Delaunay 0.493 7(1−ν)  0.246 9(1+ν) 0.329 1

Stealthywithχ=0.49 Voronoi 0.498 4(1−ν) 
Stealthywithχ=0.49 Delaunay-centroidal 0.495 2(1−ν) 
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The variety of favorable propertiesmake these low-weight networks ideal for applications that require
multifunctionality with respect to transport,mechanical and electromagnetic properties, e.g., aerospace
applications [59]. Such low-weightmultifunctional networks can be readily fabricated using 3Dprinting and
lithographic technologies [60, 61]. In addition, although the procedures and results in this work focused on two-
dimensions, they can be easily extended to treat three-dimensional open-cell foams, where the void phase is
interconnected, whichmay have potential biomedical applications [62].

While the identified optimal networkswere derived in the low-density limit (f→ 0), we expect that they
remain optimal for small but positive volume fractions andmay even apply at intermediate values offwhen the
channels are ‘thickened.’Previouswork described in [18, 19] supports this conjecture. Confirming this
conjecture represents aworthy subject for future research.

It is useful to note that disordered networks derived fromdisordered hyperuniformpoint patterns are not
necessarily hyperuniform. This is related to the fact that the centroids of the polygons in the disordered network
do not necessarily coincide with the points in the disordered point pattern that is used to generate the network
[63]. A previous numerical study of dielectric networks derived from stealthy point configurations [29] strongly
suggests that these networks are also stealthy and hyperuniform.However, the rigorousmathematical
conditions required to transform stealthy hyperuniform point patterns into stealthy hyperuniformnetworks
have yet to be identified. By contrast, ordered networks derived fromordered hyperuniformpoint patterns are
always hyperuniform. For example, the honeycombnetwork associatedwith theVoronoi tessellations of the
hyperuniformpoint pattern of triangular lattice is hyperuniform.Moreover, the spectral density of the
honeycombnetwork c[ ( )]k HV

is proportional to the structure factor of the triangular lattice [S(k)]T, i.e.,

c r= ~[ ( )] ( )[ ( )] ( )m Sk k k , 68H T
2

V

where ρ is the number density of the triangular lattice, and ~( )m k is the Fourier transformof the indicator
function of thematerial in the fundamental cell (the smallest repeating hexagonal unit) of the honeycomb
network. The investigation of the relationship between the hyperuniformity of disordered point patterns and the
hyperuniformity of the generated disordered network could shed light on identifying novel ways to generate
disordered hyperuniformnetworks.
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