Packing Nonspherical Particles: All Shapes Are Not Created Equal

Salvatore Torquato

Department of Chemistry,

Department of Physics,

Princeton Center for Theoretical Science,
and Program in Applied & Computational Mathematics

Princeton University

http://cherrypit.princeton.edu

Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Order Maps for Jammed Sphere Packings

Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Order Maps for Jammed Sphere Packings

Optimal Strictly Jammed Packings

A: Z = 7

MRJ: Z=6 (isostatic) B: Z=12

MRJ packings are hyperuniform with quasi-long-range pair correlations with decay $1/r^4$.

3D Hard Spheres in Equilibrium

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Dense Packings of Nonspherical Particles in \mathbb{R}^3

Bucky Ball: C₆₀

Truncated Icosahedron

Dense Packings of Nonspherical Particles in \mathbb{R}^3

Bucky Ball: C₆₀

Truncated Icosahedron

Ellipsoids: Donev et al., Science (2004)

Definitions

- A collection of nonoverlapping congruent particles in d-dimensional Euclidean space \mathbb{R}^d is called a packing P.
- ${\color{red} \blacktriangleright}$ The density $\phi(P)$ of a packing is the fraction of space \mathbb{R}^d covered by the particles.
- Lattice packing \equiv a packing in which particle centroids are specified by integer linear combinations of basis (linearly independent) vectors. The space \mathbb{R}^d can be geometrically divided into identical regions F called fundamental cells, each of which contains just one particle centroid. For example, in \mathbb{R}^2 :

Thus, if each particle has volume v_1 :

$$\phi = \frac{v_1}{\mathsf{Vol}(F)}.$$

- p. 5/28

Definitions

 $\begin{tabular}{ll} \blacktriangle A periodic packing is obtained by placing a fixed nonoverlapping configuration of N particles in each fundamental cell.$

Thus, the density is

$$\phi = \frac{Nv_1}{\mathsf{Vol}(F)}.$$

Definitions

ullet A periodic packing is obtained by placing a fixed nonoverlapping configuration of N particles in each fundamental cell.

Thus, the density is

$$\phi = \frac{Nv_1}{\mathsf{Vol}(F)}.$$

ullet A particle is centrally symmetric if it has a center C that bisects every chord through C connecting any two boundary points.

non-centrally symmetric

Hyperuniformity for General Point Patterns

Torquato and Stillinger, PRE (2003)

- lacksquare Denote by $\sigma^2(R) \equiv \langle N^2(R) \rangle \langle N(R) \rangle^2$ the number variance.
- m extstyle extstyle
- We call point patterns whose variance grows more slowly than R^d hyperuniform (infinite-wavelength fluctuation vanish). This implies that structure factor $S(k) \to 0$ for $k \to 0$.
- The hyperuniformity concept enables us to classify crystals and quasicrystals together with special disordered point processes.
- lacksquare All crystals and quasicrystals are hyperuniform such that $\sigma^2(R)\sim R^{d-1}$ number variance grows like window surface area.
- lacksquare Many different MRJ particle packings are hyperuniform with $S(k) \sim k$ for k
 ightarrow 0.

Donev, Stillinger & Torquato, 2005; Berthier et al., 2011; Zachary, Jiao & Torquato, 2011; Kurita and Weeks, 2011.

Outline

- Organizing principles for maximally dense packings of nonspherical particles.
- Organizing principles for MRJ packings of nonspherical particles (e.g., isostatic or not; hyperuniformity, etc.).
- Tunability capability via particle shape to design novel crystal, liquid and glassy states.

Packings of the Platonic and Archimedean Solids

Difficulty in obtaining maximally dense packings of polyhedra: complex rotational degrees of freedom and non-smooth shapes.

Packings of the Platonic and Archimedean Solids

- Difficulty in obtaining maximally dense packings of polyhedra: complex rotational degrees of freedom and non-smooth shapes.
- Torquato & Jiao, Nature (2009); PRE (2009); PRE (2010)

Adaptive Shrinking Cell

Optimization scheme that explores many-particle configurational space and the space of lattices to obtain a local or global maximal density.

■ ASC scheme can be solved using a variety of techniques, depending on the particle shape, including MC and linear-programming methods. For spheres, the latter is very efficient [Torquato and Jiao, PRE (2010)].

Kepler-Like Conjecture for a Class of Polyhedra

- Face-to-face contacts allow higher packing density.
- Central symmetry enables maximal face-to-face contacts when particles are aligned – consistent with the optimal lattice packing.

ullet For any packing of nonspherical particles of volume $v_{particle}$:

$$\phi_{max} \leq \phi_{max}^{upper\ bound} = \min \left[\frac{v_{particle}}{v_{sphere}}\ \frac{\pi}{\sqrt{18}}, 1 \right],$$

where v_{sphere} is the volume of the largest sphere that can be inscribed in the nonspherical particle.

Kepler-Like Conjecture for a Class of Polyhedra

- Face-to-face contacts allow higher packing density.
- Central symmetry enables maximal face-to-face contacts when particles are aligned consistent with the optimal lattice packing.

ullet For any packing of nonspherical particles of volume $v_{particle}$:

$$\phi_{max} \le \phi_{max}^{upper\ bound} = \min \left[\frac{v_{particle}}{v_{sphere}} \ \frac{\pi}{\sqrt{18}}, 1 \right],$$

where v_{sphere} is the volume of the largest sphere that can be inscribed in the nonspherical particle.

These considerations lead to the following conjecture:

The densest packings of the centrally symmetric Platonic and Archimedean solids are given by their corresponding optimal lattice packings.

S. Torquato and Y. Jiao, Nature 2009; PRE 2009; PRE

Dense Packings of Icosahedra, Dodecahedra & Octahedra

ASC scheme with many particles per cell yield densest lattice packings for centrally Platonic solids!

Icosahedra

 $\phi = 0.836$

Dodecahedra

 $\phi = 0.904$

Octahedra

 $\phi = 0.947$

Later showed octahedron packing leads to uncountably infinite number of tessellations by octahedra and tetrahedra (Conway, Jiao & Torquato 2010).

Superballs

A d-dimensional superball is a centrally symmetric body in \mathbb{R}^d occupying

$$|x_1|^{2p} + |x_2|^{2p} + \dots + |x_n|^{2p} \le 1$$
 (p: deformation parameter)

Superballs

Densest packings are lattices and behave quite differently from ellipsoid packings! Jiao, Stillinger & Torquato, PRL (2008); PRE (2009)

- p. 13/28

Maximally Dense Superball Packings

Jiao, Stillinger & Torquato, PRE (2009)

- Maximally dense packings are certain families of lattices for $p \geq 1/2$.
 Densest ellipsoid packings are non-lattices.
- Maximal density is nonanalytic at the "sphere" point (p=1) (in contrast to ellipsoids) and increases dramatically as p moves away from unity.
- Rich phase behavior depending on p (Batten, Stillinger & Torquato 2010; Ni et al. 2012).

Another Organizing Principle

Conjecture 2:

The optimal packing of any convex, congruent polyhedron without central symmetry is generally not a (Bravais) lattice packing.

S. Torquato and Y. Jiao, Nature 2009; PRE 2009; PRE 2010.

Tetrahedron Packings

- Regular tetrahedra cannot tile space.
- **Densest lattice packing (Hoylman, 1970):** $\phi = 18/49 = 0.3673\ldots$

- Densest packing must be a non-lattice (Conway & Torquato, 2006). Constructed a 20-particle packing with $\phi \approx 0.72$
- ullet MRJ isostatic packings of tetrahedral dice (Chaikin et al., 2007): $\phi pprox 0.74$
- Many subsequent studies improved on this density with complicated fundamental cells (Chen, 2008; Torquato & Jiao, 2009; Haji-Akbari et. al. 2009).
- Recently, 3 different groups (Kallus et al. 2010; Torquato and Jiao 2010; and Chen et al. 2010) have found 4-particle packings with $\phi \approx 0.86$.

Packings of Truncated Tetrahedra

- The Archimedean truncated tetrahedron cannot tile space.
- **Densest lattice packing (Betke & Henk, 2000):** $\phi = 207/304 = 0.680\ldots$
- A dense non-lattice packing with a two-particle (dimer) basis was constructed by Conway and Torquato (2006) with $\phi=23/24=0.958\ldots$

- Derived analytically packing that nearly fills space: $\phi=207/208=0.995\ldots$ Can be obtained by continuously deforming the Conway-Torquato packing. It has small tetrahedral holes and is a new tessellation of space with truncated tetrahedra and tetrahedra (Jiao & Torquato, 2011).
- Two-stage melting process: optimal packing is stable at high densities and the Conway-Torquato packing is stable at lower densities upon melting.

Another Organizing Principle

Conjecture 3:

Optimal packings of congruent, centrally symmetric particles that do not possesses three equivalent principle axes generally cannot be a Bravais lattice.

S. Torquato and Y. Jiao, Nature 2009; PRE 2009; PRE 2010.

Maximally Dense Ellipsoidal Packings

Densest known packings are non-Bravais lattices.

Donev, Stillinger, Chaikin and Torquato, PRL, 2004.

ullet With relatively small asphericity, can achieve $\phi=0.7707$.

Densest Known Packings of Some Convex Particles

 Table 1: Densest Known Packings of Some Convex Particles

Particle	Packing Density	Central Symmetry	Equivalent Axis	Structure
Sphere	0.740	Υ	Υ	Bravais Lattice
Ellipsoid	0.740 - 0.770	Υ	N	Periodic, 2-particle basis
Superball	0.740 - 1	Υ	Y	Bravais Lattice
Tetrahedron	0.856	N	Y	Periodic, 4-particle basis
Icosahedron	0.836	Υ	Υ	Bravais Lattice
Dodecahedron	0.904	Υ	Υ	Bravais Lattice
Octahedron	0.945	Υ	Υ	Bravais Lattice
Trun. Tetrah.	0.995	N	Υ	Periodic, 2-particle basis
Cube	1	Υ	Υ	Bravais Lattice

Generalizations of the Organizing Principles to Concave Particles

Torquato and Jiao, PRE, 2010.

Generalization of Conjecture 1:

Dense packings of centrally symmetric concave, congruent polyhedra with three equivalent axes are given by their corresponding densest lattice packings, providing a tight density lower bound that may be optimal.

Generalization of Conjecture 2:

Dense packings of concave, congruent polyhedra without central symmetry are composed of centrally symmetric compound units of the polyhedra with the inversion-symmetric points lying on the densest lattice associated with the compound units, providing a tight density lower bound that may be optimal.

Figure 1: (a) Centrally symmetric concave octapod and the associated optimal Bravais-lattice packing. (b) Concave tetrapods without center symmetry forming a centrally symmetric dimer, which then pack on a Bravais lattice [de Graaf et al, Phys. Rev. Lett. 107, 155501 (2011)].

Nonspherical Particles and Rotational Degrees of Freedom

Isostatic (Isoconstrained): Total number of contacts (constraints) equals total number of degrees of freedom. Conventionally, thought to be associated minimal number of constraints for rigidity and random (generic) packings.

$$Z = 2f$$

Z: average no. of contacts/particle; f: degrees of freedom/particle f=2 for disks, f=3 for ellipses, f=3 for spheres, f=5 for spheroids, and f=6 for general ellipsoids.

Hypostatic:

$$Z \leq 2f$$

Conventionally thought to be unstable.

Hyperstatic:

$$Z \ge 2f$$

True of ordered packings.

MRJ Ellipsoidal Packings

- There is a competition between translational & rotational jamming.
- Rotational degrees of freedom lead to improved density (over spheres) and allows for correlated contacts, which leads to MRJ hypostatic jammed packings.

Doney, Connelly, Stillinger & Torquato, PRE (2007)

MRJ Superball Packings

Jiao, Stillinger & Torquato (2009)

- ullet Packing density increases monotonically as p deviates from 1.
- Disordered superball packings are always hypostatic and do not come close to the isostatic contact number as asphericity increases!
- Isostatic disordered superball packings are difficult to construct; they require Z=12, which is associated with crystal packings.

2.5

MRJ Packings of Nontiling Platonic Solids

Jiao & Torquato, PRE (2011)

ullet Hyperuniform with quasi-long-rang (QLR) pair correlations ($1/r^4$) and isostatic.

Figure 2: (a) Structure factor S(k) of the MRJ packings of the nontiling Platonic solids. The inset shows that S(k) is linear in k for small k values. (b) Local contacting configurations: from left to right, tetrahedra, icosahedra, dodecahedra, and octahedra.

- p. 25/2

MRJ Packings of Nontiling Platonic Solids

 Table 2: Characteristics of MRJ packings of hard particles with different shapes.

Particle Shape	Isostatic	Hyperuniform QLR	MRJ Packing Fraction
Sphere	Yes	Yes	0.642
Ellipsoid	No (hypostatic)	Yes	0.642 - 0.720
Superball	No (hypostatic)	Yes	0.642 - 0.674
Superellipsoid	No (hypostatic)	Yes	0.642 - 0.758
Octahedron	Yes	Yes	0.697
Icosahedron	Yes	Yes	0.707
Dodecahedron	Yes	Yes	0.716
Tetrahedron	Yes	Yes	0.763

Generalization of Hyperuniformity to Polydisperse Systems

Structure factor of the MRJ packing of polydisperse particles does not vanish at k=0 (Kurita & Weeks, PRE 2010; Berthier et al., PRL 2011; Zachary, Jiao, & Torquato, PRL 2011).

- Introduced a more general notion of hyperuniformity involving local-volume-fraction fluctuations and associated spectral function $\tilde{\chi}(k)$ for general two-phase media (packings or not) (Zachary & Torquato, J. Stat. Mech. 2009).
- We have shown that MRJ packings of hard-particles are hyperuniform with QLR correlations (i.e., $\tilde{\chi}(k) \to 0$ as $k \to 0$), regardless of the particle shapes or relative sizes (Zachary, Jiao & Torquato, PRL 2011; PRE 2011).

CONCLUSIONS

- Non-spherical particles are not created equal! Changing the shape of a particle can dramatically alter its packing attributes.
- We now have some organizing principles for both maximally dense and MRJ packings of nonspherical particles.
- Tunability capability via particle shape could be used to tailor many-particle systems (e.g., colloids and granular media) to have designed crystal, liquid and glassy states.

Collaborators

- Robert Batten, Princeton
- Robert Connelly, Cornell
- John Conway, Princeton
- Paul Chaikin, NYU
- Aleks Doney, Princeton/Courant
- Yang Jiao, Princeton
- Frank Stillinger, Princeton
- Chase Zachary, Princeton

Acknowledgments: NYU/Princeton NSF MRSEC