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Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

. – p. 2/28



Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Order Maps for Jammed Sphere Packings
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Geometric Structure Approach to Jammed Particle Packings

Torquato & Stillinger, Rev. Mod. Phys. (2010)

Order Maps for Jammed Sphere Packings

Optimal Strictly Jammed Packings

A: Z = 7 MRJ: Z = 6 (isostatic ) B: Z = 12

• MRJ packings are hyperuniform with quasi-long-range pair correlations with decay 1/r4.
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3D Hard Spheres in Equilibrium

Torquato & Stillinger, Rev. Mod. Phys. (2010)
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Dense Packings of Nonspherical Particles inR3

Granular Media Bucky Ball: C 60 Truncated Icosahedron
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Dense Packings of Nonspherical Particles inR3

Granular Media Bucky Ball: C 60 Truncated Icosahedron

Ellipsoids: Donev et al., Science (2004)
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Definitions
A collection of nonoverlapping congruent particles in d-dimensional

Euclidean space R
d is called a packing P .

The density φ(P ) of a packing is the fraction of space R
d covered by the

particles.

Lattice packing ≡ a packing in which particle centroids are specified by

integer linear combinations of basis (linearly independen t) vectors. The space

R
d can be geometrically divided into identical regions F called fundamental

cells , each of which contains just one particle centroid. For exam ple, in R
2:

Thus, if each particle has volume v1:

φ =
v1

Vol(F )
.
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Definitions
A periodic packing is obtained by placing a fixed nonoverlapping

configuration of N particles in each fundamental cell.

Thus, the density is

φ =
Nv1

Vol(F )
.
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Definitions
A periodic packing is obtained by placing a fixed nonoverlapping

configuration of N particles in each fundamental cell.

Thus, the density is

φ =
Nv1

Vol(F )
.

A particle is centrally symmetric if it has a center C that bisects every chord

through C connecting any two boundary points.

centrally symmetric centrally symmetric non-centrally sy mmetric
2 equivalent ⊥ axes 2 inequivalent ⊥ axes

. – p. 6/28



Hyperuniformity for General Point Patterns

Torquato and Stillinger, PRE (2003)

ΩR Ω
R

Denote by σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2 the number variance .

For a Poisson point pattern and many correlated point patter ns, σ2(R) ∼ Rd.

We call point patterns whose variance grows more slowly than Rd hyperuniform

(infinite-wavelength fluctuation vanish). This implies tha t structure factor S(k) → 0 for k → 0.

The hyperuniformity concept enables us to classify crystals and quasicrystals together with

special disordered point processes .

All crystals and quasicrystals are hyperuniform such that σ2(R) ∼ Rd−1 – number variance

grows like window surface area .

Many different MRJ particle packings are hyperuniform with S(k) ∼ k for k → 0.

Donev, Stillinger & Torquato, 2005; Berthier et al., 2011;

Zachary, Jiao & Torquato, 2011; Kurita and Weeks, 2011.
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Outline

Organizing principles for maximally dense packings of
nonspherical particles.

Organizing principles for MRJ packings of nonspherical
particles (e.g., isostatic or not; hyperuniformity, etc.).

Tunability capability via particle shape to design novel crystal,
liquid and glassy states .
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Packings of the Platonic and Archimedean Solids
Difficulty in obtaining maximally dense packings of polyhed ra: complex

rotational degrees of freedom and non-smooth shapes.
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Packings of the Platonic and Archimedean Solids
Difficulty in obtaining maximally dense packings of polyhed ra: complex

rotational degrees of freedom and non-smooth shapes.

Torquato & Jiao, Nature (2009); PRE (2009); PRE (2010)

Platonic Solids

Archimedean Solids
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Adaptive Shrinking Cell

Optimization scheme that explores many-particle configurational space

and the space of lattices to obtain a local or global maximal density.

(a) (b) (c)

ASC scheme can be solved using a variety of techniques, depend ing on

the particle shape, including MC and linear-programming methods . For

spheres , the latter is very efficient [Torquato and Jiao, PRE (2010)].
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Kepler-Like Conjecture for a Class of Polyhedra

Face-to-face contacts allow higher packing density.

Central symmetry enables maximal face-to-face contacts when

particles are aligned – consistent with the optimal lattice packing .

For any packing of nonspherical particles of volume vparticle:

φmax ≤ φupper bound
max = min

[

vparticle

vsphere

π√
18

, 1

]

,

where vsphere is the volume of the largest sphere that can be inscribed
in the nonspherical particle.
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Kepler-Like Conjecture for a Class of Polyhedra

Face-to-face contacts allow higher packing density.

Central symmetry enables maximal face-to-face contacts when

particles are aligned – consistent with the optimal lattice packing .

For any packing of nonspherical particles of volume vparticle:

φmax ≤ φupper bound
max = min

[

vparticle

vsphere

π√
18

, 1

]

,

where vsphere is the volume of the largest sphere that can be inscribed
in the nonspherical particle.

These considerations lead to the following conjecture:

The densest packings of the centrally symmetric Platonic and Archimedean

solids are given by their corresponding optimal lattice packings.

S. Torquato and Y. Jiao, Nature 2009; PRE 2009; PRE

2010.
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Dense Packings of Icosahedra, Dodecahedra & Octahedra

ASC scheme with many particles per cell yield densest lattice packings for

centrally Platonic solids!

Icosahedra Dodecahedra Octahedra

φ = 0.836 φ = 0.904 φ = 0.947

Later showed octahedron packing leads to uncountably infinite number of

tessellations by octahedra and tetrahedra (Conway, Jiao & Torquato 2010).
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Superballs
A d-dimensional superball is a centrally symmetric body in R

d occupying

|x1|2p + |x2|2p + · · · + |xn|2p ≤ 1 (p: deformation parameter )

Superdisks

Superballs

Densest packings are lattices and behave quite differently from

ellipsoid packings! Jiao, Stillinger & Torquato, PRL (2008); PRE (2009)
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Maximally Dense Superball Packings

Jiao, Stillinger & Torquato, PRE (2009)
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Maximally dense packings are certain families of lattices for p ≥ 1/2.

Densest ellipsoid packings are non-lattices .
Maximal density is nonanalytic at the “sphere” point ( p = 1) (in

contrast to ellipsoids) and increases dramatically as p moves away

from unity.
Rich phase behavior depending on p (Batten, Stillinger & Torquato

2010; Ni et al. 2012).
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Another Organizing Principle

Conjecture 2:

The optimal packing of any convex, congruent polyhedron without

central symmetry is generally not a (Bravais) lattice packing.

S. Torquato and Y. Jiao, Nature 2009; PRE 2009; PRE 2010.
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Tetrahedron Packings
Regular tetrahedra cannot tile space .

Densest lattice packing (Hoylman, 1970): φ = 18/49 = 0.3673 . . .

Densest packing must be a non-lattice (Conway & Torquato, 2006). Constructed a 20-particle

packing with φ ≈ 0.72

MRJ isostatic packings of tetrahedral dice (Chaikin et al., 2007): φ ≈ 0.74

Many subsequent studies improved on this density with compl icated fundamental cells (Chen,

2008; Torquato & Jiao, 2009; Haji-Akbari et. al. 2009).

Recently, 3 different groups (Kallus et al. 2010; Torquato a nd Jiao 2010; and Chen et al. 2010) have

found 4-particle packings with φ ≈ 0.86.
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Packings of Truncated Tetrahedra
The Archimedean truncated tetrahedron cannot tile space .

Densest lattice packing (Betke & Henk, 2000): φ = 207/304 = 0.680 . . .

A dense non-lattice packing with a two-particle (dimer) basis was constructed b y Conway and

Torquato (2006) with φ = 23/24 = 0.958 . . ..

Derived analytically packing that nearly fills space : φ = 207/208 = 0.995 . . .. Can be obtained

by continuously deforming the Conway-Torquato packing. It has small tetrahedral holes and is a

new tessellation of space with truncated tetrahedra and tet rahedra (Jiao & Torquato, 2011).

Two-stage melting process : optimal packing is stable at high densities and the Conway- Torquato

packing is stable at lower densities upon melting.
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Another Organizing Principle

Conjecture 3:

Optimal packings of congruent, centrally symmetric particles that do

not possesses three equivalent principle axes generally cannot be a

Bravais lattice.

S. Torquato and Y. Jiao, Nature 2009; PRE 2009; PRE 2010.
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Maximally Dense Ellipsoidal Packings

Densest known packings are non-Bravais lattices.

Donev, Stillinger, Chaikin and Torquato, PRL, 2004.

With relatively small asphericity, can achieve φ = 0.7707.
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Densest Known Packings of Some Convex Particles

Table 1: Densest Known Packings of Some Convex Particles

Particle Packing Density Central Symmetry Equivalent Axis Structure

Sphere 0.740 Y Y Bravais Lattice

Ellipsoid 0.740 - 0.770 Y N Periodic, 2-particle basis

Superball 0.740 - 1 Y Y Bravais Lattice

Tetrahedron 0.856 N Y Periodic, 4-particle basis

Icosahedron 0.836 Y Y Bravais Lattice

Dodecahedron 0.904 Y Y Bravais Lattice

Octahedron 0.945 Y Y Bravais Lattice

Trun. Tetrah. 0.995 N Y Periodic, 2-particle basis

Cube 1 Y Y Bravais Lattice
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Generalizations of the Organizing Principles to Concave Particles

Torquato and Jiao, PRE, 2010.

Generalization of Conjecture 1:

Dense packings of centrally symmetric concave, congruent polyhedra with three equivalent axes are

given by their corresponding densest lattice packings, providing a tight density lower bound that may be

optimal.

Generalization of Conjecture 2:

Dense packings of concave, congruent polyhedra without central symmetry are composed of centrally

symmetric compound units of the polyhedra with the inversion-symmetric points lying on the densest

lattice associated with the compound units, providing a tight density lower bound that may be optimal.

(a) (b)
Figure 1: (a) Centrally symmetric concave octapod and the associated optimal Bravais-lattice

packing. (b) Concave tetrapods without center symmetry for ming a centrally symmetric dimer, which then

pack on a Bravais lattice [ de Graaf et al, Phys. Rev. Lett. 107, 155501 (2011) ].
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Nonspherical Particles and Rotational Degrees of Freedom

Isostatic (Isoconstrained) : Total number of contacts (constraints)

equals total number of degrees of freedom. Conventionally, thought to

be associated minimal number of constraints for rigidity and random

(generic) packings.
Z = 2f

Z: average no. of contacts/particle; f: degrees of freedom/particle

f = 2 for disks, f = 3 for ellipses, f = 3 for spheres, f = 5 for

spheroids, and f = 6 for general ellipsoids.

Hypostatic:

Z ≤ 2f

Conventionally thought to be unstable .

Hyperstatic:

Z ≥ 2f

True of ordered packings.
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MRJ Ellipsoidal Packings
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There is a competition between translational & rotational jamming.

Rotational degrees of freedom lead to improved density (over spheres) and allows for correlated

contacts , which leads to MRJ hypostatic jammed packings.

Donev, Connelly, Stillinger & Torquato, PRE (2007)
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MRJ Superball Packings

Jiao, Stillinger & Torquato (2009)
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Packing density increases monotonically as p deviates from 1.

Disordered superball packings are always hypostatic and do not come

close to the isostatic contact number as asphericity increases !

Isostatic disordered superball packings are difficult to construct; they

require Z = 12, which is associated with crystal packings.
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MRJ Packings of Nontiling Platonic Solids
Jiao & Torquato, PRE (2011)

Hyperuniform with quasi-long-rang (QLR) pair correlation s (1/r4) and isostatic .
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(a)

(b)

Figure 2: (a) Structure factor S(k) of the MRJ packings of the nontiling Platonic solids. The ins et

shows that S(k) is linear in k for small k values. (b) Local contacting configurations: from left to ri ght,

tetrahedra, icosahedra, dodecahedra, and octahedra.
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MRJ Packings of Nontiling Platonic Solids

Table 2: Characteristics of MRJ packings of hard particles with diff erent shapes.

Particle Shape Isostatic Hyperuniform QLR MRJ Packing Fract ion

Sphere Yes Yes 0.642

Ellipsoid No (hypostatic) Yes 0.642 − 0.720

Superball No (hypostatic) Yes 0.642 − 0.674

Superellipsoid No (hypostatic) Yes 0.642 − 0.758

Octahedron Yes Yes 0.697

Icosahedron Yes Yes 0.707

Dodecahedron Yes Yes 0.716

Tetrahedron Yes Yes 0.763
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Generalization of Hyperuniformity to Polydisperse Systems
Structure factor of the MRJ packing of polydisperse particles does not vanish at k = 0 (Kurita &

Weeks, PRE 2010; Berthier et al., PRL 2011; Zachary, Jiao, & T orquato, PRL 2011).

Introduced a more general notion of hyperuniformity involving local-volume-fraction fluctuations

and associated spectral function χ̃(k) for general two-phase media (packings or not) (Zachary &

Torquato, J. Stat. Mech. 2009).

We have shown that MRJ packings of hard-particles are hyperuniform with QLR correlations (i.e.,

χ̃(k) → 0 as k → 0), regardless of the particle shapes or relative sizes (Zachary, Jiao &

Torquato, PRL 2011; PRE 2011).
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CONCLUSIONS
Non-spherical particles are not created equal ! Changing the shape of a

particle can dramatically alter its packing attributes .

We now have some organizing principles for both maximally dense and MRJ

packings of nonspherical particles.

Tunability capability via particle shape could be used to tailor many-particle

systems (e.g., colloids and granular media) to have designed crystal, liquid

and glassy states.
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