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Abstract
Although the prime numbers are deterministic, they can be viewed, by 
some measures, as pseudo-random numbers. In this article, we numerically 
study the pair statistics of the primes using statistical–mechanical methods, 
particularly the structure factor S(k) in an interval M � p � M + L with M 
large, and L/M smaller than unity. We show that the structure factor of the 
prime-number configurations in such intervals exhibits well-defined Bragg-
like peaks along with a small ‘diffuse’ contribution. This indicates that primes 
are appreciably more correlated and ordered than previously thought. Our 
numerical results definitively suggest an explicit formula for the locations and 
heights of the peaks. This formula predicts infinitely many peaks in any non-
zero interval, similar to the behavior of quasicrystals. However, primes differ 
from quasicrystals in that the ratio between the location of any two predicted 
peaks is rational. We also show numerically that the diffuse part decays 
slowly as M and L increases. This suggests that the diffuse part vanishes in an 
appropriate infinite-system-size limit.

Keywords: prime numbers, structure factor, hyperuniformity

(Some figures may appear in colour only in the online journal)

1.  Introduction

The properties of prime numbers have been a source of fascination since ancient times. Euclid 
proved that there are infinitely many primes. Given the first n prime numbers p1, p2, · · · , pn, 
the subsequent prime can be found deterministically by sieving [1]. Nonetheless, there is no 
known deterministic formula that can quickly (polynomial in the number of digits in a prime) 
generate large numbers that are guaranteed to be prime. (So far, the largest known prime is 
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277,232,917  −  1, which is about 22 million digits long [2].) Let π(x) denote the prime counting 
function, which gives the number of primes less than integer x. According to the prime number 
theorem [3], the prime counting function in the large-x asymptotic limit is given by

π(x) ∼ x
ln(x)

(x → ∞).� (1)

This means that for sufficiently large x, the probability that a randomly selected integer not 
greater than x is prime is very close to 1/ ln(x), which can be viewed as position-dependent 
number density ρ(x) (number of primes up to x divided by the interval x). This implies that 
primes become sparser as x increases and hence can be regarded as a statistically inhomoge-
neous set of points that are located on a subset of odd integers.

While the prime numbers (except for 2) are a deterministic subset of odd integers, they 
can be viewed, by some measures, as pseudo-random numbers. Moreover, there are quick 
stochastic ways to find large primes [7–11], examples of which are based on variants of 
Fermat’s little theorem [7–10]. To get a sense of how primes can be viewed as pseudo-random 
numbers, let us consider the gap distribution function P(z), which gives the probability distri-
bution of the gap size between two consecutive primes, z. Figure 1 compares the gap probabil-
ity distribution P(z) for primes to the uncorrelated lattice gas at the same number density. An 
‘uncorrelated lattice gas’ refers to a lattice-gas system where each site has a certain probability 
of being occupied, independent of the occupation of other sites. For an uncorrelated lattice 
gas at number density ρ = N/L  with lattice spacing 2 in the infinite-system-size limit, the gap 
distribution is exactly given by

P(z) = f (1 − f )z/2−1,� (2)

where f = 2ρ is the probability that a site is occupied. We see that by the gap distribution, 
primes cannot be clearly distinguished from an uncorrelated lattice gas. Indeed, probabilistic 
methods to treat primes have yielded fruitful insights about them [4–6]. For example, based 
on the assumption that primes behave like a Poisson process (uncorrelated lattice gas), Cramér 
(1920) conjectured that [4] for large x

g(x) � c ln2(x)� (3)

where g(x) denotes the largest prime gap within an interval [x,2x].
On the other hand, it is known that primes contain unusual patterns. Chebyshev observed 

in 1853 that primes congruent to 3 modulo 4 seem to predominate over those congruent to 1 
[12]. Assuming a generalized Riemann hypothesis, Rubinstein and Sarnak [13] exactly char-
acterized this phenomenon and more general related results. A computational study on the 
Goldbach conjecture demonstrates a connection based on a modulo 3 geometry between the 
set of even integers and the set of primes [14]. In 1934, Vinogradov proved that every suf-
ficiently large odd integer is the sum of three primes [15]. This method has been extended 
to cover many other types of patterns [16–19]. Recently, it has been shown that there are 
infinitely many pairs of primes with some finite gap [20] and that primes ending in 1 are less 
likely to be followed by another prime ending in 1 [21]. Numerical evidence of regularities 
in the distribution of gaps between primes when these are divided into congruence families 
have also been reported [22–24], along with the observation of period-three oscillations in the 
distribution of increments of the distances between consecutive prime numbers [25].

The present paper is motivated by certain unusual properties of the Riemann zeta function 
ζ(s), which is a function of a complex variable s that is intimately related to primes. The zeta 
function has many different representations, one of which is the series formula

G Zhang et alJ. Phys. A: Math. Theor. 51 (2018) 115001



3

ζ(s) =
∞∑

n=1

1
ns ,� (4)

which only converges for Re(s) > 1. However, ζ(s) has a unique analytic continuation to the 
entire complex plane, excluding the simple pole at s  =  1. According to the Riemann hypoth-
esis, the nontrivial zeros of the zeta function lie along the critical line s  =  1/2  +  it with t ∈ R 
in the complex plane. The nontrivial zeros tend to get denser the higher they are on the critical 
line. When the spacings of the zeros are appropriately normalized so that they can be treated as 
a homogeneous point process at unity density, the resulting pair correlation function takes on 
the simple form 1 − sin2(πr)/(πr)2 [6]. The corresponding structure factor S(k) (essentially 
the Fourier transform of g2(r)) tends to zero linearly in the wavenumber k as k tends to zero 
but is unity for sufficiently large k. This implies that the normalized Riemann zeros possess a 
remarkable type of correlated disorder at large length scales known as hyperuniformity [26]. 
A hyperuniform many-particle system is one in which the structure factor approaches zero 
in the infinite-wavelength limit [27]. In such systems, density fluctuations are anomalously 
suppressed at very large length scales, a ‘hidden’ order that imposes strong global structural 
constraints. All structurally perfect crystals and quasicrystals are hyperuniform, but typical 
disordered many-particle systems, including gases, liquids, and glasses, are not. Disordered 
hyperuniform many-particle systems are exotic states of amorphous matter that have attracted 
considerable recent attention [28–45]. The zeta function is directly related to primes via the 
following Euler product formula:

ζ(s) =
[ ∞∏

n=1

[1 − 1/ps
n]
]−1

,� (5)

which leads to a variety of explicit formulas that link primes on the one hand to the zeros of the 
zeta function on the other hand [46–48]. Thus, one can in principle deduce information about 
primes from information about zeros of the zeta function. Accordingly, one might expect 
primes to encode hyperuniform correlations that are seen in the Riemann zeros.

Figure 1.  Comparison of the gap distribution for primes and the uncorrelated lattice 
gas with the same cardinality (occupation number) as the set of primes. The primes are 
taken to lie on an integer lattice with a spacing of 2, i.e. a subset of odd positive integers. 
We consider N primes in interval [M,M  +  L] (M large and M � L). Here N = 107, 
L = 244 651 478 with M = 42 151 671 493, the 1800 000 000th prime number.
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In this article, we numerically study the pair statistics of configurations of primes, especially 
the structure factor S(k) in an interval M � p � M + L with M large, and L/M smaller than 
unity. As we will detail in section 2.3, this choice of intervals allow us to obtain prime con-
figurations with virtually constant density from one end of the interval to the other. We show 
in section 3 that the structure factor exhibits well-defined Bragg-like peaks along with a small 
‘diffuse’ contribution. This indicates that primes are appreciably more correlated than anyone 
has previously conceived. Our numerical results definitively suggest an explicit formula for the 
locations and heights of the peaks. This formula predicts infinitely many peaks in any non-zero 
interval. Although such a behavior is similar to that of quasicrystals [51–53], primes differ from 
the latter in that the ratio between the locations of any two predicted peaks is rational. We also 
show numerically that the diffuse part decays slowly as M or L increases. In a subsequent paper 
[55], we prove this to be true and investigate its consequences. This might indicate that the dif-
fuse part vanishes in an appropriate infinite-system-size limit. We note that the structure factor 
has been used to study other number-theoretic systems [7, 26, 49, 50].

The rest of the paper is organized as follows: in section 2, we present relevant definitions 
and describe the simulation procedure. In section 3, we present results for the pair statistics of 
primes in certain intervals in both direct and reciprocal spaces. In section 4, we make conclud-
ing remarks.

2.  Definitions and simulation procedure

We will study the pair correlation function as well as the structure factor of prime-number 
configurations. Similar to [54], we treat primes in some interval [M,M  +  L] to be a special 
lattice-gas model: the primes are ‘occupied’ sites on a integer lattice of spacing 2 that contains 
all of the positive odd integers and the unoccupied sites are the odd composite integers. As 
detailed below, we consider the positive parameter L/M generally to be smaller than unity to 
ensure homogeneity. Within this interval, let Ns and N be the total number of sites and the total 
number of primes, respectively. In practice, we consider the half-open interval [M, M + L) 
because it provides a simple relation between L and Ns, namely, L  =  2Ns. For all cases consid-
ered in this paper, M � 3. Figure 2 illustrates an example of a prime configuration. The rest of 
this section details the mathematical tools that we use to treat such systems.

2.1.  Discrete fourier transform

For a function f (r) defined on an integer lattice with spacing a that is contained within a peri-
odic box of length L, one may define its Fourier transform as follows:

Figure 2.  Schematic plot of a prime-number configuration with M  =  51 and L  =  30. 
Since we always use M � 3, any prime number in the interval [M, M + L) is odd. 
Therefore, a prime-number configuration is a lattice gas with lattice spacing 2 in which 
the primes are the ‘occupied’ sites and the composites are ‘unoccupied’ sites.
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f̃ (k) =
∑

r=0,a,2a,··· ,L−a

f (r) exp(ikr),� (6)

where the parameter k is an integer multiple of 2π/L. The inverse transform is given by

f (r) =
1
Ns

Ns−1∑
j=0

f̃
(

2πj
L

)
exp

(
−i

2πj
L

r
)

,� (7)

where Ns  =  L/a is the number of sites.

2.2.  Pair statistics and their basis properties

We define η(r) as the indicator function such that η(r) = 1 if the site at r is occupied, and 
η(r) = 0 otherwise. Let η̃(r) be its Fourier transform. We define occupation fraction to be 
f =< η(r) >, where  <> denotes an average over all r. We define the structure factor as

S(k) = |η̃(k)|2/N − Nδk,0.� (8)

Define the pair correlation function g2(r) as

g2(r) =
1

Nf

∑
n=0,a,2a,··· ,L−a

η(n)η(n + r)− δr,0

f
.� (9)

By definition, g2(0)  =  0. For r �= 0, g2(r) can be interpreted as the probability that the site at 
p  +  r is occupied given that the site at p is occupied divided by f.

The structure factor and the pair correlation function are related as follows:

Nδk,0 + S(k) = |η̃(k)|2/N

=
1
N

∑
m=0,a,2a,··· ,L−a

η(m) exp(ikm)
∑

n=0,a,2a,··· ,L−a

η(n) exp(−ikn)

=
1
N

∑
m=0,a,2a,··· ,L−a

∑
n=0,a,2a,··· ,L−a

η(m)η(n) exp[ik(m − n)]

=
1
N

∑
r=0,a,2a,··· ,L−a

∑
n=0,a,2a,··· ,L−a

η(n + r)η(n) exp(ikr)

=
1
N

∑
n=0,a,2a,··· ,L−a

η(n + 0)η(n) exp(ik0)

+
1
N

∑
r=a,2a,··· ,L−a

∑
n=0,a,2a,··· ,L−a

η(n + r)η(n) exp(ikr)

=
N
N

+
1
N

∑
r=a,2a,··· ,L−a

Nfg2(r) exp(ikr)

= 1 + f
∑

r=a,2a,··· ,L−a

g2(r) exp(ikr)

= 1 + f
∑

r=0,a,··· ,L−a

g2(r) exp(ikr).

�

(10)
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This equation enables us to obtain a sum rule for both g2(r) and S(k). For g2(r), plugging k  =  0 
into equation (10) yields

N − 1
f

=
∑

r=a,2a,··· ,L−a

g2(r).� (11)

The sum rule for S(k) is easily found by invoking the inverse Fourier transform equation:

g2(r) =
1

Nsf

Ns−1∑
j=0

[
S
(

2πj
L

)
+ Nδk,0 − 1

]
exp

(
−i

2πj
L

r
)

.� (12)

At r  =  0, this relation becomes

0 =

Ns−1∑
j=0

[
S
(

2πj
L

)
+ Nδk,0 − 1

]

=

Ns−1∑
j=1

S
(

2πj
L

)
+ N − Ns,

� (13)

and hence the sum rule for the structure factor is given by

Ns−1∑
j=1

S
(

2πj
L

)
= Ns − N.� (14)

For the primes, L  =  2Ns, and hence the sum rule is specifically

Ns−1∑
j=1

S
(
πj
Ns

)
= Ns − N.

� (15)
The fact that all primes greater than 3 are odd integers lead to a few important properties of 

S(k). First, Nδk,0 + S(k) is a periodic function of period π ,since

Nδk+π,0 + S(k + π) =
|
∑N

j=1 exp[−i(k + π)( pj − M)]|2

N

=
|
∑N

j=1 exp[−ik( pj − M)] exp(−iπ( pj − M)]|2

N

=
| − exp(iπM)

∑N
j=1 exp[−ik( pj − M)]|2

N

=
|
∑N

j=1 exp[−ik( pj − M)]|2

N
= Nδk,0 + S(k).

�

(16)

Second, from equations (6) and (8), one can see that when k = mπ, where m is any non-zero 
integer, S(k) = N achieves the global maximum of this function. The function S(k) therefore 
displays strong peaks at such k values. Third, from equations (6) and (8), one can see the func-
tion S(k) has reflection symmetry S(k) = S(−k). This reflection symmetry, combined with the 
periodicity (equation (16)), implies another reflection symmetry, S(π/2 + k) = S(π/2 − k). 
With these properties in mind, we only need to study S(k) in the range 0 < k � π in this paper.
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2.3.  Simulation procedure

In statistical mechanics, the study of S(k) often focuses on statistically homogeneous systems. 
However, prime numbers are not homogeneous. Instead, in the vicinity of x, the density of 
prime numbers scales as 1/ ln(x). To overcome this difference, we focus on large M values 
and let L/M be a constant less than unity3. This implies that the ‘local’ density from the begin-
ning to the end of the interval [M, M + L) is virtually a constant. For example, we will study a 
system of M = 1010 and L = 107. As x changes from M to M  +  L, 1/ ln(x) only changes from 
0.043 429… to 0.043 427….

We minimize the problem of inhomogeneity by requiring sufficiently large M. Instead, one 
might think an even better solution to this problem is to rescale the configuration such that it is 
homogeneous. The natural scaling is to replace each prime number p with p/ ln( p). However, 
it turns out that after performing such rescaling, the structure factor appears to be completely 
noisy with no obvious peaks with heights comparable to N; see figure 34. This is to be con-
trasted with our findings reported in the rest of the paper, in which we choose to study primes 
in the interval [M, M + L) with M large, and L/M smaller than unity.

We obtain a list of prime numbers from [56], and calculate S(k) of prime numbers and 
uncorrelated lattice gases with the fast Fourier transform (FFT) algorithm using the kissFFT 
software [57]. This algorithm has the advantage of not only being ‘fast’5, but also being accu-
rate, as the upper bound on the relative error scales as ε log(L), where ε is the machine floating-
point relative precision. We use double-precision numbers to further minimize ε.

More precisely, FFT allows one to efficiently calculate

X(q) =
T−1∑
n=0

xn exp(−2πiqn/T)
� (17)

Figure 3.  Structure factor S(k) associated with p/ ln( p) for all prime number p’s in the 
interval [3, 3 + 105).

3 Strictly speaking, the requirement that L/M  <  1 is not important. Densities from one end to the other would be 
nearly constant in the M → ∞ limit even if L/M = β > 1. However, for computationally practical values of M, a 
much smaller L is desired to accurately ascertain constant density.
4 Notice that in this interval, primes possess a sharp density gradient, and the p → p/ ln( p) rescaling is strongly 
non-linear. If we had chosen an interval with a negligible density gradient, then the p → p/ ln( p) rescaling would 
be almost linear, and S(k) would essentially be a simple rescaling of the ones reported below (figure 5).
5 The time complexity of calculating S(k) for all k’s using FFT algorithm scales as L log(L), while the time  
complexity of doing so using equation (10) scales as LN.
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for arbitrary x0, x1, ⋯, xT−1. Here, we simply let T  =  L/2, and let xj  =  1 if M  +  2j is a prime 
number and xj  =  0 if M  +  2j is composite. The structure factor is then calculated from:

S(2πq/L) = |X(q)|2/N.� (18)

3.  Results for the pair statistics of prime numbers

The pair correlation function as defined in equation (9), g2(x), of prime numbers is presented 
in figure 4 and compared with g2(x) of uncorrelated lattice gases. This quantity for uncorre-
lated lattice gas is simply

g2(x) =
N − 1

f (Ns − 1)� (19)

for any x �= 0. This is because after one site is occupied, out of the remaining Ns  −  1 sites, 
exactly N  −  1 sites are occupied. We see that by this measure, the prime numbers appear to be 
distinctly different from uncorrelated lattice gases. We see that g2(x) for primes is higher than 
g2(x) of the uncorrelated lattice gas if and only if x is divisible by 3. However, we will see that 
the difference in pair statistics is much more obvious when we study S(k) below.

We present and study numerically calculated structure factors of prime numbers for various 
M’s and L’s in this section. At first, let us examine S(k) for M = 106 + 1 and L  =  5000, which 
is presented in figure 5. At a larger scale, S(k) appears to consist of many well-defined Bragg-
like peaks of various heights, with the highest peak occurring at k = π (left panel). As we 
zoom in, it becomes evident that besides those peaks, S(k) also has a random, noisy contrib
ution that is often below 1 (right panel). We will call the latter contribution the ‘diffuse part’ in 
the rest of the paper. Figure 5 also includes S(k) for uncorrelated lattice gases, which consists 
of a diffuse part and a single peak at the trivial value of k = π. Away from the peak, S(k) for 

uncorrelated lattice gases fluctuates around an average value of Ns−N
Ns−1  (this particular average 

value is required by the sum rule, equation (14)). A major conclusion is that the structure fac-
tor of primes is characterized by a substantial amount of order across length scales, relative 
to the uncorrelated lattice gas, as evidenced by the appearance of many Bragg-like peaks. At 
this stage, it seems that the existence of the diffuse part makes primes non-hyperuniform. 

Figure 4.  Pair correlation function g2(x), as defined in equation (9), for a prime number 
configuration of M = 1010 + 1, L = 106, and N = 43 427, compared with g2(x) of a 
uncorrelated lattice gas configuration of the same L and N.
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However, we will show in section 3.2 that the diffuse part decreases as L increases, and sug-
gest that it vanishes in the infinite-system-size limit.

At this stage, the distinction between the peaks and the ‘diffuse part’ is somewhat unclear. 
Since S(k) contains peaks of various heights, is it possible that the diffuse part is actually made 
of many smaller peaks? We can only answer this question after we study the peaks and the 
diffuse part more deeply later in this section.

3.1.  Peaks

We move on to study the peaks. From figure 5, one sees that the highest peak is at k = π, which 
is trivially caused by the periodicity of the underlying lattice. The next highest two peaks are 
at k = π/3 and k = 2π/36. Even lower peaks occur at k = π/5, 2π/5, 3π/5, and 4π/5. Still 
lower peaks occur at k = π/7, 2π/7, 3π/7, 4π/7, k = 5π/7, and 6π/7. Examining S(k) of a 
much larger system (M = 1010 + 1 and L = 107) revealed that there are even more peaks with 
locations that obey the formula k = mπ/n, where m is any integer coprime with n and n is any 

square-free odd integer and hence has a distinct prime factorization, i.e. n =
∏J

j=1 pj, where 
J is a positive integer, and p1, p2, ⋯, pJ are non-repeating prime numbers larger than 2. If n is 
even or is not square-free, then we observe no peak at k = mπ/n. We verified the existence of 
such peaks for n up to 300. As n increases beyond 300, however, the peaks become too weak 
to be distinguishable from the diffuse part.

Having an analytical formula of the peak locations, we move on to study the peak heights. 
As we have shown earlier, the height of the peak at k = π is simply N. What can we say about 
the heights of the other peaks? In figure 6 we present computed peak heights at k = π/3 and 
k = π/5 for M = 1010 + 1 and various L’s. We see that as L grows, the heights of the peaks at 
k = π/3 and k = π/5 also grow and remain roughly proportional to N. Looking at the inset, 
we see that both S(π/3) and S(π/5) oscillates periodically as L increases: S(π/3) attains a 
maximum when L is divisible by 3, and S(π/5) attains a maximum when L is divisible by 5. 
Examining the heights of other peaks, we find that the height of a peak at k = mπ/n is indeed 
highest when L is divisible by n.

Figure 5.  Left: S(k) for prime numbers as a function of k (in units of the integer lattice 
spacing) for M = 1010 + 1 and L = 105 contains many well-defined Bragg-like peaks 
of various heights, creating a type of self-similarity. Right: a zoomed-in view revealing 
the existence of a small, noisy ‘diffuse part’ besides the peaks. We also plot S(k) for 
uncorrelated lattice gases for comparison. As we have discussed in section 2, we only 
show S(k) in the range 0 < k � π, and therefore omit the peak at k  =  0.

6 It should be noted that since k has to be integer multiples of 2π/L, for L = 105, k = π/3 and k = 2π/3 cannot be 
chosen. The actually observed peaks occur at the closest allowed k points instead.

G Zhang et alJ. Phys. A: Math. Theor. 51 (2018) 115001
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Since the divisibility of L with n affects the peak heights and hence will introduce unin-
tended errors if not chosen properly, we desire an L that is divisible by as many prime numbers 
as possible. We therefore chose L = 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 = 9699 690 and 
recomputed the heights of several peaks. The results are summarized in table 1. We find that 

when L is divisible by n, the height of the peak at k = mπ/n is very close to N
∏J

j=1( pj − 1)−2, 
where pj are the distinct prime factors of n.

Do these numerically generated peaks have finite or infinitesimal width? To answer this 
question, we present a close view of the peak at k = π/3 for three different L’s in figure 7. It 
turns out that, if L is divisible by n, the peak at k = mπ/n has infinitesimal width, in the sense 
that S(k) at one k value attains the local maximum and S(k) at all adjacent k values are as low as 
the typical diffuse part. However, if L is not divisible by n, then the peak has a finite width, as 
S(k) of all k values very close to mπ/n rises and become much higher than the typical diffuse 
part. In figure 7 one can also see that when peak widths are finite, a lower L results in a more 
broadly spread peak. Therefore, all of the peaks may have infinitesimal width in the infinite-
L limit. However, in a finite-L simulation, choosing an L that is divisible by as many prime 
numbers as possible provides a better estimate of S(k) in the infinite-L limit. As n increases, 
one finds an increasing number of lower peaks, resulting in a statistical self-similarity.

3.2.  Diffuse part

The above analysis suggest that the structure factor of primes possess infinitely many Dirac-
delta-function peaks of various heights in the infinite-system-size limit. Therefore, one might 
naturally ask, could the random, noisy ‘diffuse part’ be simply a superposition of many 
small peaks? The answer is no. In figure 8 we present S(k) of two different L’s in the range 
0.2 � k � 0.24. For L  =  5000, S(k) in this range appeared completely random and noisy, 
matching our definition of the diffuse part. To see if this diffuse part is actually a superposi-
tion of many small peaks, we compare it to the structure factor for L = 500 000. The larger 
L allows more k points to be chosen, and therefore improves the k resolution, and reveals 
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Figure 6.  The structure factor S(k) at k = π, k = π/3, and k = π/5, as a function of L 
at M = 1010 + 1. The inset presents more data for 105 � L � 105 + 20.
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some peaks in this k range. We see that although S(k) of the smaller L appeared to be entirely 
random, the maximum at k ≈ 0.21 corresponds to a strong peak of the larger system, and is 
therefore actually a peak. However, other maxima for the smaller system do not correspond to 
peaks for the larger system, and can only be explained by assuming the existence of a noisy 
contribution to S(k), which we call the ‘diffuse part’. To summarize, in figure 8 we show that 
for finite systems, there is clearly a noisy contribution to S(k) other than the peak contribution, 
even though distinguishing these two components of S(k) can be difficult without consulting 
the analytical formula for the peaks.

Table 1.  Peak heights at several different n and m’s for M = 2.5×108 + 1 and 
L = 9699 690 and comparison with the predicted height from the analytical formula.

n m S(mπ/n)/N Postulated analytical formula

3 1 0.250 000 0003 (3  −  1)−2  =  0.25
5 1 0.062 682 935 36

(5  −  1)−2  =  0.0625
2 0.062 318 335 26

7 1 0.027 646 966 27
(7 − 1)−2 = 0.027 77 · · ·2 0.027 834 230 55

3 0.027 852 824 86
15= 3 × 5 1 0.015 641 151 90

[(3 − 1)(5 − 1)]−2 = 0.015 625
2 0.015 832 663 09
4 0.015 518 143 12
7 0.015 509 640 66

105= 3 × 5 × 7 1 0.000 409 696 3803 [(3 − 1)(5 − 1)(7 − 1)]−2 = 0.000 434 027 77 · · ·
2 0.000 441 802 5682
4 0.000 430 592 4622
8 0.000 387 997 4866

11 0.000 420 322 3484
13 0.000 441 110 7279
16 0.000 419 124 9498
17 0.000 389 371 6268
19 0.000 438 812 8207
22 0.000 419 303 6024
23 0.000 437 559 9695
26 0.000 420 361 3535
29 0.000 441 818 7004
31 0.000 445 765 0582
32 0.000 423 763 5619
34 0.000 450 097 9160
37 0.000 446 659 7486
38 0.000 466 330 4920
41 0.000 425 567 3779
43 0.000 484 593 3410
44 0.000 467 958 9962
46 0.000 457 298 5410
47 0.000 409 563 7658
52 0.000 452 196 2772
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The diffuse part contributes to not only k points where there are no peaks, but also to k 
points where there are peaks. In figure 9, we compare numerical peak heights, averaged over 
all allowed m for a particular n, with the analytic peak formula described in section 3.1. It 
turns out that the numerical average is always slightly higher than that predicted by this form
ula, and their difference is of the same order of magnitude as the diffuse part. Thus, S(k) at 
predicted peak locations is actually the sum of the peak and diffuse contributions.

We can quantify the diffuse part using the median of S(k) for all possible choices of k in 
the range 0 < k � π. We present these medians in figure 10. As L increases, the median of 
S(k) generally decreases. However, with our current data, it is unclear if the median of S(k) 
approaches zero in the L → ∞ limit.

Figure 7.  S(k) near k = π/3 for three different L’s. Each curve is averaged over 100 
prime-number configurations, with the jth configuration consists of all prime numbers 
in the range [1010 + ( j − 1)L + 1, 1010 + jL + 1).

Figure 8.  The structure factor, S(k), normalized by N, for two different L’s and 
M = 106 + 1.

G Zhang et alJ. Phys. A: Math. Theor. 51 (2018) 115001



13

4.  Conclusions

In summary, we have numerically shown that the structure factor of prime numbers in 
the interval M � p < M + L with large M and L/M  <  1 exhibit well-defined Bragg-like 
peaks, alongside a very small diffuse part, which slowly decays as the system size increases.  

Figure 9.  Average peak height of all peaks of a given n, the predicted peak heights, 
and their difference for all n < 105 that are odd, square-free, and divide L evenly. Here 
M = 1010 + 1 and L = 9699 690. For each n, we find all m’s that are coprime with n, 
and average the heights of peaks at mπ/n. The average turns out to be always greater 

than the prediction, N
∏J

j=1( pj − 1)−2. Their difference is between 0.1 and 1, which is 
of the same order of magnitude as the diffuse part.

Figure 10.  The median of the structure factor, S(k), for all possible choices of k, as 
a function of L. Here M is chosen to be 10L. The diffuse part of primes appears to be 
slowly decreasing as L increases. This is to be contrasted with the uncorrelated lattice 
gas with an appreciably larger predictable diffuse part in which there is no dependence 
on the system size.

G Zhang et alJ. Phys. A: Math. Theor. 51 (2018) 115001
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In contrast, the peaks persist as the system size increases. Therefore, we have numerically shown 
in this paper that primes are characterized by a substantial amount of order, especially relative 
to an uncorrelated lattice gas that does not have any such peaks. We also show that peaks at 
k = mπ/n are sharper when L is divisible by n. Our numerical results definitively suggested an 
explicit formula for the peak locations and heights, which predicts dense Bragg peaks, as occurs 
in quasicrystals (e.g. Fibonacci chain [51] as well as other one-dimensional examples [53]), but 
unlike the latter, the peak locations occur at rational multiples of π. In an upcoming paper [55], 
we will show that the primes in the intervals studied here are similar to ‘limit periodic’ systems 
[50] but still distinct from them. Limit-periodic systems are unions of an infinite number of peri-
odic systems with rational periods, and possess dense Bragg peaks with rational ratios between 
their locations. Nevertheless, primes are certainly not unions of periodic systems, since they 
possess a density gradient, and large primes are difficult to predict [2].

In [55], we will use the well-known Dirichlet’s theorem on arithmetic progressions to show 
that primes in the intervals studied here are limit-periodic in a probabilistic sense. Based on 
this theorem, we will provide a number-theoretic explanation for the numerical observations 
here; specifically, the peak location and height formula, the decrease of peak widths, and how 
the diffuse part vanishes as L increases. Moreover, we will show there that if the interval of 
the primes is chosen to be appreciably smaller or larger than the one used here, the primes 
would not be characterized by a large degree of order, as measured by the τ order metric [40].

The numerical techniques that we employed here to investigate the structure factor of 
primes in finite intervals should be applicable to characterize other complex point configura-
tions in which the shape and heights of peaks depend sensitively on the system size. These 
examples include quasicrystals [51] and limit-periodic systems [50]. For example, to study 
the shape and height of a peak located at k = 2π/α, the best choice for the system size is a 
multiple of α. Moreover, the structure factor of any finite system with dominant peak structure 
will always numerically possess a ‘noisy’ diffuse contribution. A simple way to characterize 
the diffuse part is to calculate the median value of S(k) for all allowed k values and then study 
its behavior as a function of the system size to see if it becomes negligible in the infinite-size 
limit.
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