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where I(1)(x)−φ1 is a random variable with zero mean, and I(1) is the indicator function
(2.1) for phase 1. The autocovariance χ(r) has the limiting values χ(0) � φ1φ2 and
χ(∞) � 0, the latter applying in the absence of long-range order. Moreover, the function
χ(r) must be positive semidefinite (nonnegative) in the sense that for any finite number
of spatial locations r1, r2, . . . , rm in �d and arbitrary real numbers a1, a2, . . . , am,

m∑
i�1

m∑
j�1

aiajχ(ri − rj) ≥ 0. (2.27)

A variety of length scales associated with S2 can be defined. One length scale, which
we refer to as �S, is rooted in rigorous considerations:

�S �
{∫ ∞

0
rχ(r)dr

}1/2

�
{∫ ∞

0
r
[
S2(r) − φ2

1

]
dr

}1/2

. (2.28)

This length scale arises in rigorous bounds on the fluid permeability (Prager 1961)
and trapping constant (Rubinstein and Torquato 1988) of three-dimensional isotropic
random porous media. Since application of (2.8) for any statistically homogeneous
medium leads to the result that the autocovariance of phase 1 is equal that of phase 2,
i.e.,

χ(r) � S(1)
2 (r) − φ2

1 � S(2)
2 (r) − φ2

2, (2.29)

it is clear that measures based on the two-point function for the phases are not capable
of distinguishing length scales of phase 1 from length scales of phase 2. For example,
for isotropic media, the length scale defined by (2.28) for phase 1 is identical to the
corresponding one for phase 2.

Debye and Bueche (1949) showed that the two-point probability function S2(r) of
an isotropic porous solid can also be obtained via scattering of radiation. Here phases
1 and 2 are the void and solid phases, respectively. The normalized scattered intensity
i(k) at a wave number k for a three-dimensional isotropic porous medium of volume
V is proportional to the Fourier transform of the autocovariance χ(r), i.e.,

i(k) � 4πVn2
o

∫ ∞

0
χ(r)r2

sin(kr)
kr

dr, (2.30)

where no is the mean density of electrons. To get the real-space two-point function S2(r)
from the scattered intensity i(k), one need only perform the inverse Fourier transform:

χ(r) � S2(r) − φ2
1 � 1

2π2Vn2
o

∫ ∞

0
i(k)k2 sin(kr)

kr
dk. (2.31)

The accuracy of (2.31) depends on whether the “experimentally bandlimited” scatter-
ing curve i(k) approximates sufficiently closely the entire function i(k). The spectral
properties of χ will be explored further below.

It has been shown (Guinier and Fournet 1955, Debye, Anderson and Brumberger
1957) that the expansion of the two-point probability function S2(r) through terms
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z

z

phase i

Figure 2.8 In two dimensions, the lineal-path function is the fraction of phase i obtained from
a projection of a slab of thickness z onto a line.

Figure 2.9 Chords are the line segments between the intersections of an infinitely long line
with the two-phase interface.

Underwood (1970), “overlap” effects due to projection of the three-dimensional image
and “truncation” effects due to slicing the system (see Figure 2.8).

For statistically homogeneous but anisotropic media, L(i)(z) will depend not only
on the magnitude of vector z but on its orientation. For statistically inhomogeneous
media, L(i)(x1, x2) will depend on the absolute positions x1 and x2 of the end points of
the vector z � x2 − x1.

2.5 Chord-Length Density Function

A quantity related to the lineal-path function L(i)(z) is the chord-length probability
density function p(i)(z) (Matheron 1975, Torquato and Lu 1993). (The latter has been
also called the chord-length “distribution” function.) Chords are all of the line seg-
ments between intersections of an infinitely long line with the two-phase interface (see
Figure 2.9). The density function p(i)(z) is defined for statistically isotropic media as
follows:

p(i)(z)dz � Probability of finding a chord of length between z and z+dz
in phase i.

(2.67)
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The exclusion probabilities are related to the pair distribution functions via the
expressions

EV (r) � exp
[
−
∫ r

0
ρs1(y)GV (y)dy

]
, (2.101)

EP(r) � exp
[
−
∫ r

0
ρs1(y)GP(y)dy

]
, (2.102)

which are obtained by use of (2.94)–(2.97). Combination of (2.94), (2.95), (2.101), and
(2.102) yields

HV (r) � ρs1(r)GV (r) exp
[
−
∫ r

0
ρs1(y)GV (y)dy

]
(2.103)

and

HP(r) � ρs1(r)GP(r) exp
[
−
∫ r

0
ρs1(y)GP(y)dy

]
. (2.104)

We see that once any one of the tripletHV,EV,GV (HP,EP,GP) is known, any of the other
the nearest-neighbor functions can be ascertained via the interrelations (2.92)–(2.97)
and (2.101)–(2.104). The nearest-neighbor functions are lower-order microstructural
functions, since they are lower-order cases of the canonical n-point correlation function
discussed in Section 4.4

We note that there are exact conditions that the void quantities must obey when r
equals the sphere radius R for any statistically homogeneous and isotropic system of
identical spheres. By definitions (2.88) and (2.90), we have that

HV (R) � s, EV (R) � φ1, (2.105)

where s and φ1 are the specific surface and volume fraction of phase 1, respectively.
This expression combined with (2.96) yields

GV (R) � s

ρs1(R)φ1
. (2.106)

These relations are true even if the spheres overlap to varying degrees. Most of the void
quantities at their extreme values are known exactly:

EV (0) � GV (0) � 1, HV (0) � ρs1(0) EV (∞) � HV (∞) � 0.

Some of the particle quantities at their extreme values are known exactly:

EP(0) � 1, EP(∞) � HP(∞) � 0.

The behavior of the functions HP and GP at r � 0 and of GV and GP at r � ∞ are
microstructure-dependent (see Chapters 5 and 6).

Consider the spatial moments of HV and HP. The moments of HV are trivially re-
lated to moments of the pore-size function P(δ) for the special case of spheres (see
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with fixed N and V in contact with a heat bath at absolute temperature T), one has
(Hansen and McDonald 1986)

PN(rN) � e−β	N(rN)

QN
with QN �

∫
e−β	N(rN) drN, (3.6)

where QN is the canonical configurational partition function, β � 1/(kT) is a reciprocal
temperature, and k is Boltzmann’s constant (trivially related to the ideal gas constant).
By contrast, there is an infinite number of nonequilibrium ensembles consistent with
an N-particle potential.

We recall that in the context of random heterogeneous materials, our interest is in
microstructures that can be taken to be independent of time. In practice, this require-
ment restricts us to equilibrium systems or, more generally, quenched nonequilibrium
systems.

For time-independent ensembles consisting of indistinguishable particles, it is con-
venient to introduce the generic n-particle probability density function ρn(rn), defined
as

ρn(rn) � N!
(N − n)!

∫
PN(rN)drN−n, (3.7)

where drN−n ≡ drn+1drn+2 · · ·drN. In words, ρn(rn)drn is proportional to the probability
of finding any subset of n particles with configuration rn in volume element drn. Even
though it follows from (3.5) and (3.7) that ρn is not normalized to unity but rather∫

ρn(rn)drn � N!
(N − n)!

, (3.8)

it is still commonly referred to as a “probability density function,” since it can be made
so trivially by dividing it by the normalization constant N!/(N − n)!.

For statistically homogeneous media, ρn(rn) is translationally invariant and hence
depends only on the relative displacements of the positions with respect to some chosen
origin, say r1:

ρn(rn) � ρn(r12, r13, . . . , r1n), (3.9)

where rij � rj−ri. In particular, the one-particle function ρ1 is just equal to the constant
number density of particles ρ, i.e.,

ρ1(r1) � ρ ≡ lim
N,V→∞

N

V
. (3.10)

The limit indicated in (3.10) is referred to as the thermodynamic limit.
For statistically homogeneous media, it is convenient to define the so-called

n-particle correlation function

gn(rn) � ρn(rn)
ρn

. (3.11)

In systems without long-range order and in which the particles are mutually far from
one another (i.e., rij � |rij| → ∞, 1 ≤ i < j ≤ N), ρn(rn) → ρn and we have from (3.11)
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Figure 3.8 A realization of a sticky-particle system.
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Figure 3.9 The Lennard–Jones potential (left) and the corresponding Boltzmann factor (right).

occurs in colloids. Baxter showed that this system undergoes a first-order liquid–vapor
phase transition.

Lennard–Jones Potential
A well-known potential that involves both repulsive and attractive interactions and
possesses a continuous first derivative is the Lennard-Jones potential (see Figure 3.9),
given by

ϕ2(r) � 4ε

[(
σ

r

)12

−
(
σ

r

)6]
, (3.25)

where σ is the distance at which ϕ2(r) � 0, and ε is the attractive well depth. The
first term on the right side represents a strongly repulsive core and the second term
represents a short-ranged attraction due to “dispersion” forces. The Lennard-Jones
model is a prototypical potential for classical simple liquids (Hansen and McDonald
1986), such as argon, and for colloidal dispersions (Russel et al. 1989).
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0

h(r)

−1
r

Figure 3.12 The total correlation function h(r) for a typical disordered system of interacting
particles.

3.2 Ornstein–Zernike Formalism

In their study of density fluctuations in fluid systems near the critical point, Ornstein
and Zernike (1914) introduced the direct correlation function c(r) via an integral equa-
tion that linked it to the pair correlation function g2(r). This integral equation serves
as a basis for obtaining estimates of g2(r).

Consider statistically homogeneous systems of spherical particles. It is convenient
to define the total correlation function h(r) as

h(r) � g2(r) − 1. (3.30)

For disordered systems, h(r) tends to zero when r → ∞ (see Figure 3.12). In analogy
with the results of Section 2.2.5, the structure factor S(k), alluded to in Section 3.1.1,
must be nonnegative, i.e., S(k) ≡ 1 + ρh̃(k) ≥ 0 for all k, where h̃(k) is the Fourier
transform of h(r). Ornstein and Zernike (1914) proposed a decomposition of h into a
“direct” part and “indirect” part:

h(r12) � c(r12) + ρ
∫
h(r23)c(r13)dr3, (3.31)

where rij � rj − ri. The Ornstein–Zernike integral equation (3.31) may be considered
to be a definition of the direct correlation function c(r). We note that this definition is
valid even for nonequilibrium systems. Note that in contrast to PN and ρn defined by
(3.4) and (3.7), the quantities g2, h, and c are dimensionless.

In words, the Ornstein–Zernike equation (3.31) states that the total correlation be-
tween particles at r1 and r2 can be separated into two contributions: (i) a direct effect of
a particle at r1 on one at r2, which is generally short-ranged (having roughly the same
range as the pair potential ϕ2) and is characterized by c(r), and (ii) an indirect effect, in
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Table 3.1 Some important densities for d -dimensional equilibrium hard-sphere systems.

STATE d � 1 d � 2 d � 3
Freezing density, ηf - 0.69 0.494

Maximum metastable density, ηc - 0.83 0.644
Maximum density 1.0 π/

√
12 ≈ 0.907 π/

√
18 ≈ 0.740

singular point in the sense that it is the only point along the metastable extension with
a nonzero average coordination number Z [i.e., g2(r) develops a delta-function contri-
bution at r � D as in (10.42)]. Hence, it is more accurate to refer to ηc as the MRJ state
for equilibrium hard spheres.

We now describe different analytical methods to obtain the radial distribution func-
tion g2(r) for identical statistically isotropic d-dimensional hard spheres of diameter D
at reduced density η in thermal equilibrium.

3.3.1 Low-Density Expansions

Before obtaining the low-density expansion of the radial distribution function g2(r),
we first state an important geometrical result that will be of use to us here and in the
subsequent discussions. Specifically, we note that the overlap or intersection volume
υint
n of n d-dimensional spheres of radii a1, a2, . . . , an centered at positions x1, x2, . . . , xn

is given by the convolution integral

υint
n (x1, x2, . . . , xn; a1, . . . , an) �

∫
dy

n∏
i�1

�(ai − |y− xi|), (3.47)

where �(x) is the Heaviside step function

�(x) �
{

0, x < 0,
1, x ≥ 0,

(3.48)

and υint
1 (a) is just the volume υ1(a) of a d-dimensional sphere of radius a. We denote

by υint
n (x1, x2, . . . , xn; a) the intersection volume when the spheres have the same size

(ai � a for all i). For example, for the first three space dimensions, the intersection
volumes of two identical spheres (divided by υ1) whose centers are separated by the
distance r � |x2 − x1| are given by

υint
2 (r; a)
υ1(a)

� (1 − r

2a
)�(2a− r), d � 1, (3.49)

υint
2 (r; a)
υ1(a)

� 2
π

[
cos−1

( r
2a

)
− r

2a
(1 − r2

4a2
)1/2
]
�(2a− r), d � 2, (3.50)

υint
2 (r; a)
υ1(a)

�
[
1 − 3

4
r

a
+ 1

16

( r
a

)3
]
�(2a− r), d � 3. (3.51)
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For x ≥ 1, we introduce the function H(τ) such that

n(x, τ) � exp
[

− (x− 1)τ
]
H(τ). (3.69)

Substituting this into (3.67) yields the first-order differential equation

dH

dτ
� 2e−τ

τ
H(τ). (3.70)

The initial conditionH(0) � 0 can be determined from the previous relations by noting
that η(0) � 0. Integrating (3.70) gives

H(τ) � τ2 exp
[
−2

∫ τ

0

1 − e−u
u

du

]
� exp

[−2(γ + Ei(τ))
]
, (3.71)

where Ei(τ) is the exponential integral and γ � 0.57721 . . . is Euler’s constant.
For x < 1, the gap distribution function is given by

n(x, τ) � 2
∫ τ

0
du
H(u)
u
e−xu. (3.72)

The density of adsorbed rods is calculated from (3.66) by substituting the expression
for n(x, τ) in (3.72) and integrating with respect to x:

η(τ) �
∫ τ

0
du
H(u)
u2

. (3.73)

At the saturation limit (i.e., as τ → ∞), the maximum density is exactly

ηc � η(τ � ∞) �
∫ ∞

0
du
H(u)
u2

≈ 0.7476. (3.74)

Moreover, we can expand the reduced density of (3.73) about τ−1 � 0 to give

η(τ) ∼ η(∞) − exp(−2γ)
τ

,

and hence for large τ we have the asymptotic algebraic behavior

η(∞) − η(τ) ∼ τ−1. (3.75)

Evaluating the gap distribution function (3.72) at the final state τ � ∞ shows that
it diverges logarithmically as x → 0, implying the same logarithmic singularity in the
pair correlation function g2(x+ 1,∞), i.e.,

g2(x+ 1,∞) � −2[η(∞)]−2 exp(−2γ) ln x, x→ 0. (3.76)

Indeed, an analytical integral expression for the pair correlation function g2(x+1, τ) at
any τ or density has been given recently by Bonnier et al. (1994) that at the saturation
limit exhibits the expected logarithmic divergence. Calculation of the integral relation
for g2 becomes progressively difficult as x increases from zero. However, owing to the
fact that the g2 decays to its long-range value very rapidly after x ≈ 2 (even at the
saturation limit), one need not evaluate the expression for large distances.
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Bonnier et al. (1994) also showed that the pair correlation function has super-
exponential decay. Specifically, they found that at any finite time τ or density
η,

g2(x+ 1, η) ∼ 1
�(x+ 1)

(
2

ln x

)x
, x→ ∞. (3.77)

Thus, g2 is a short-ranged function at any density. This turns out to be true in higher
dimensions as well.

It can be shown that the aforementioned exclusion probability EV (x, τ) for x ≥ 1 at
time τ is given by (Rintoul, Torquato and Tarjus 1996)

EV (x, τ) � H(τ)
τ2

e−2(x−1)τ , x ≥ 1. (3.78)

Hence, according to (3.65), the fraction of available space when a test particle of unit
length is added to the system at some fixed time is given by

EV (1, τ) � H(τ)
τ2

. (3.79)

Since small times imply small densities, we can manipulate the expansions of (3.71)
and (3.73) in powers of τ to give the small-density expansion of the fraction of available
space as

EV (1, η) � 1 − 2η+ 1
2
η2 + 2

9
η3 + O(η4). (3.80)

This last expansion is to be compared with the corresponding expansion of the exact
expression EV (1, η) � (1 − η) exp[−2η/(1 − η)] for an equilibrium system of hard rods
(Section 5.2.5), which expands as

EV (1, η) � 1 − 2η+ 1
2
η2 + 1

3
η3 + O(η4). (3.81)

We see that the RSA and equilibrium expansions are the same up through order η2 but
differ at third- and higher-order terms, behavior consistent with the opening remarks
of this section.

3.4.2 Identical Hard Spheres in Higher Dimensions

In contrast to the one-dimensional instance, there are no analytical solutions for the
coverage at the saturation limit for identical d-dimensional hard spheres for d ≥ 2.
Consequently, RSA processes at high densities for d ≥ 2 have been primarily inves-
tigated using computer simulation techniques. Numerical experiments have yielded
that η(∞) ≈ 0.547 for d � 2 (hard disks) (Feder 1980) and η(∞) ≈ 0.38 for d � 3 (hard
spheres) (Cooper 1988) in the thermodynamic limit.

In his numerical study of RSA hard disks, Feder (1980) postulated that the
asymptotic coverage for d-dimensional hard spheres follows the algebraic behavior

η(∞) − η(τ) ∼ τ−1/d. (3.82)
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by (Steinhardt, Nelson and Ronchetti 1983)

Q6 ≡
(

4π
13

6∑
m�−6

∣∣∣Y6m

∣∣∣2
)1/2

, (3.85)

where Y6m denotes an average over all bonds. For a completely disordered system in
the infinite-volume limit, Q6 equals zero, whereas Q6 attains its maximum value for
space-filling jammed structures (QFCC

6 ≈ 0.575) in the perfect FCC crystal. Thus, Q6

provides a global measure of FCC crystallite formation in the system. For convenience,
we normalize the orientational order metric by its value in the perfect FCC crystal, i.e.,
Q ≡ Q6/Q

FCC
6 .

Scalar measures of translational order have not been well studied. Torquato et al.
(2000) have introduced a simple translational order metric T that measures the degree
of spatial ordering, relative to the perfect FCC lattice at the same volume fraction.
Specifically,

T �
∣∣∣∣∣
∑NC
i�1(ni − nideal

i )∑NC
i�1(nFCC

i − nideal
i )

∣∣∣∣∣ , (3.86)

where ni, for the system of interest, denotes the average occupation number for the
shell of width aδ centered at a distance from a reference sphere that equals the ith
nearest-neighbor separation for the open FCC lattice at that density. Moreover, a is the
first nearest-neighbor distance for that FCC lattice, andNC is the total number of shells.
Similarly, nideal

i and nFCC
i are the corresponding shell occupation numbers for an ideal

gas (spatially uncorrelated spheres) and the open FCC lattice. Observe that T � 0 for
an ideal gas (perfect randomness), and T � 1 for perfect FCC spatial ordering.

Both Q and T are crystal-dependent measures in that they measure order with re-
spect to the FCC lattice. Other reasonable choices for order metrics have been tested,
including crystal-independent ones, such as an information-theoretic entropy, another
translational-order metric, and a “local” version of Q. Importantly, the evaluations of
these order metrics resulted in the same qualitative behavior as that given by Q and T
for the configurations discussed immediately below. All of these results, as well as the
utility of other, more sophisticated, order metrics for many-particle systems in general,
are described by Truskett, Torquato and Debenedetti (2000) and Kansal, Truskett and
Torquato (2000a).

3.5.4 Molecular Dynamics Simulations

To support the aforementioned arguments, Torquato et al. (2000) carried out molec-
ular dynamics simulations (Chapter 12) using systems of 500 identical hard spheres
with periodic boundary conditions. Starting from an equilibrium liquid configuration
at a volume fraction η � 0.3, the system was compressed to a jammed state by the
well-known method of Lubachevsky and Stillinger (1990), which allows the diameter
of the particles to grow linearly in time with a dimensionless rate �. The jammed state
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Figure 3.18 Left panel: The reciprocal compression rate �−1 versus the volume fraction η of
the final jammed state of hard spheres obtained using the molecular dynamics compression
protocol of Lubachevsky and Stillinger (1990). Right panel: The Q-T plane for the hard-sphere
system, where T and Q are translational and orientational order metrics, respectively (where
δ � 0.196 and NC � 7). Shown are the average values for the jammed states, as well as states
along the equilibrium liquid (dotted) and crystal (dashed) branches.

occurs when the diameters can no longer increase in time, the sphere collision rate
diverges, and no further compression can be achieved after relaxing the configuration
at the jammed volume fraction. Figure 3.18 shows that the volume fraction of the final
jammed states is inversely proportional to the compression rate �. A linear extrapola-
tion of the data to the infinite compression rate limit yields η ≈ 0.64, which is close
to the supposed RCP value reported by Scott and Kilgour (1969). Figure 3.19 shows a
jammed configuration at η ≈ 0.64.

The relationship between translational and bond-orientational ordering was char-
acterized for the first time by Torquato et al. (2000). Figure 3.18 shows their results for
the aforementioned jammed structures in theQ-T plane. This order plot reveals several
key points. First, T and Q are positively correlated and therefore are essentially equiv-
alent measures of order for the jammed structures. Second, they found that the MRJ
packing fraction ηM is approximately equal to 0.64 for 500-sphere systems using the
Lubachevsky–Stillinger protocol. It should be noted, however, that a systematic study
of other protocols may indeed find jammed states with a lower degree of order as mea-
sured byQ or some other order metric. Lastly and most importantly, the degree of order
increases monotonically with the jammed packing fraction. These results demonstrate
that the notion of RCP as the highest possible density that a random sphere packing
can attain is ill-defined, since one can achieve packings with arbitrarily small increases
in volume fraction at the expense of small increases in order.

For purposes of comparison, the order plot of Figure 3.18 includes results for the
equilibrium hard-sphere system for densities along the stable liquid branch and sta-
ble crystal branch (ending at the maximum close-packed FCC state). Interestingly, the
equilibrium structures exhibit the same monotonicity properties as the jammed struc-
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Figure 4.1 Portion of a realization of possibly overlapping two-dimensional spheres (i.e., cir-
cular disks). Phase 1 is the space V1 exterior to the particles (unshaded region). Phase 2 is the
space V2 occupied by the particles (shaded region).

I(x) for the matrix phase is given by

I(x; rN) �
N∏
i�1

[1 −m(|x − ri|;R)]

� 1 −
N∑
i�1

m(|x − ri|;R) +
N∑
i<j

m(|x − ri|;R)m(|x − rj|;R)

−
N∑
i<j<k

m(|x − ri|;R)m(|x − rj|;R)m(|x − rk|;R) + · · · , (4.3)

where the exclusion-region indicator function m(r;R) is defined by

m(r;R) � �(R− r) �
{

1, r ≤ R,
0, r > R,

(4.4)

and �(x) is the Heaviside step function (3.48). The volume excluded to the center of
a spherical inclusion of radius R by a point “test” particle is itself a spherical region
of radius R. This is why we refer to m(r;R) as an exclusion-region indicator function.
Importantly, if the test particle had nonzero size, then the exclusion region would not
simply be a spherical region of radius R (see Figure 4.3). Note that the kth sum in (4.3)
is over all distinguishable k-tuplets of possibly overlapping particles and thus contains
N!/[(N−k)!k!] terms. The first sum accounts for regions of space occupied byN spheres
(without any overlap); the second sum accounts for possible overlap between pairs of
spheres; the third sum accounts for possible overlap between triplets of spheres, etc.

For statistically inhomogeneous media, we can explicitly find an expression for S1(x)
by ensemble averaging (4.3), i.e.,
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s ≤
∫
δ(R− r12)ρ1(r2)dr2 −

∫
δ(R− r12)m(r13)ρ2(r23)dr2dr3

+ 1
2

∫
δ(R− r12)m(r13)m(r14)ρ3(r23, r24)dr2dr3dr4,

which are the first three partial sums of (4.9) using the aforementioned change of
variables. More generally, if w(�) denotes the partial sum of the series (4.9) from k � 1
up to k � �, then we have

s

}
≥
≤

{
w(�) for � even,

for � odd.
(4.15)

4.1.2 Example Calculations

It is instructive to describe how one evaluates the one-point expressions (4.5) and (4.9)
for S1 and s for some statistically homogeneous model microstructures given the n-
particle functions ρn. Calculations of higher-order correlation functions are given in
the next several chapters.

Consider homogeneous ensembles of d-dimensional identical spheres of radius R at
number density ρ. Recall from Chapter 3 that the dimensionless, or reduced, density η
is defined by

η � ρυ1(R), (4.16)

where υ1(R) is d-dimensional volume of a single sphere is given by

υ1(R) � πd/2

�(1 + d/2)
Rd, (4.17)

and �(x) is the gamma function. For example, for d � 1,2, and 3, υ1(R) � 2R, πR2, and
4πR3/3, respectively. The corresponding d-dimensional surface area of a single sphere,
denoted by s1(R), is just

s1(R) � ∂υ1

∂R
� dπd/2

�(1 + d/2)
Rd−1. (4.18)

For d � 1,2, and 3 this yields s1(R) � 2, 2πR, and 4πR2, respectively.
First, we evaluate relations (4.5) and (4.9) for the extreme limits of the cherry-pit

model [cf. (3.27) and Figure 3.10], i.e., λ � 0 (fully penetrable spheres) and λ � 1
(totally impenetrable spheres). Then we discuss calculations for arbitrary values of the
impenetrability parameter λ.

Fully Penetrable Spheres, λ � 0
For homogeneous fully penetrable spheres, we recall that ρn is trivially equal to the
constant ρn [cf. (3.18)]. Substitution of this relation into (4.5) with S1 � φ1 yields

φ1(R) � 1 +
∞∑
k�1

(−ρ)k

k!

∫ k∏
j�1

m(|x − rj|;R)drj � 1 +
∞∑
k�1

(−ρ)k

k!
υk1(R),
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Figure 4.3 The same system of identical spheres of radius R is shown in both panels. However,
the available spaces (cross-hatched regions) to a point test particle (left panel) and a nonzero-
sized test particle (right panel) are clearly different. Here b and a � b + R are the radii of the
test particle and exclusion sphere, respectively.

is the exclusion sphere indicator function. Similarly, we have that the indicator function
for the available surface Si is given by

M(x; ai) � −∂I(x; ai)
∂ai

�
N∑
j�1

δ(|x − rj| − ai) −
N∑
j<k

δ(|x − rj| − ai)m(|x − rk|; ai)

−
N∑
j<k

δ(|x − rk| − ai)m(|x − rj|; ai) + · · · , (4.31)

where δ(x) is the Dirac delta function. Clearly, M(x; ai) is a function that is zero every-
where except when x describes a position on Si. Equations (4.29) and (4.31) generalize
the corresponding relations derived by Torquato and Stell (1982), and by Torquato and
Stell (1984) and Chiew and Glandt (1984), respectively, for the special case in which all
bi � 0 and all ai � R.

The ensemble averages of I(x; ai) and M(x; ai) are simply the volume fraction
S1(x; ai) � φ1(x; ai) and specific surface s(x; ai) associated with the available space
Di and the available surface Si, respectively. It is only when all bi � 0 and all ai � R

that these two averages are, respectively, equal to the usual position-dependent ma-
trix volume fraction S1(x;R) � φ1(x;R) and the specific surface of the particle–matrix
interface s(x;R).

We now define a more general n-point function Gn in terms of available-space indi-
cator functions for the case of a mixture of n test particles of radii b1, . . . , bn at positions
xn ≡ {x1, x2, . . . , xn}, and N identical spherical inclusions of radius R:
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of two and three circles. An analytical expression for the intersection area of three
circles was given by Rowlinson (1964). For d � 3, Kratky (1981) also showed that
the intersection volumes of five or more spheres of equal radius can be expressed
as a linear combination of intersection volumes of two, three, and four spheres. The
intersection volumes of three spheres (Powell 1964) and four spheres (Helte 1994) are
known analytically. Therefore, in principle, the exact intersection (and hence union)
area of n disks or volume of n spheres of equal radius can be exactly computed.

5.1.1 n-Point Probability Functions

The n-point probability function Sn for phase 1 (matrix phase) is obtained from the
general definition (4.69) in terms of the canonical function, i.e, Sn(xn) � Hn(Ø; xn; Ø)
in the limit that all of the radii of the test particles shrink to zero (or ai → R,∀i). This
definition and expression (5.1) yield the exact relation

Sn(xn) � exp
[

− ρυn(xn;R)
]

(5.6)

for d-dimensional fully penetrable spheres, where υn(xn;R) denotes the union vol-
ume of n identical spheres of radius R. The general expression (5.6) was derived first
by Torquato and Stell (1983b), who referred to Sn as the n-point matrix probability
functions.

When n � 1, we see that this expression gives

S1 � φ1 � exp(−η),
which is in agreement with relation (4.19) for the “matrix” volume fraction φ1 given
earlier. Recall that η � ρυ1(R) is a reduced density [cf. (4.16)], where υ1(R) is given by
(4.17) in d dimensions.

When n � 2, we see that relation (5.6) gives

S2(r) � exp
[

− ηυ2(r;R)
υ1(R)

]
, (5.7)

where r � |x12|. The union volume of two spheres for the first three space dimensions
is obtained by combining (3.49)–(3.51) with (5.4) to give

υ2(r;R)
υ1(R)

� 2�(r − 2R) +
(
1 + r

2R

)
�(2R− r), d � 1, (5.8)

υ2(r;R)
υ1(R)

� 2�(r − 2R)

+ 2
π

[
π + r

2R

(
1 − r2

4R2

)1/2
− cos−1

( r
2R

)]
�(2R− r), d � 2, (5.9)

υ2(r;R)
υ1(R)

� 2�(r − 2R) +
[
1 + 3

4
r

R
− 1

16

( r
R

)3
]
�(2R− r), d � 3. (5.10)

Note that because the union volume υ2(r;R) becomes constant after one diameter (r �
2R), S2 attains its asymptotic value of φ2

1 for r ≥ 2R, independent of the density. Thus,
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d=3, φ2=0.5

Figure 5.4 Matrix lineal-path function L(z) and chord-length density function p(z) for a three-
dimensional system of overlapping spheres of radius R at a sphere volume fraction φ2 � 0.5,
as obtained from (5.23) and (5.26) with d � 3.

υE � υ1(R;d) + υ1(R;d− 1)z, (5.20)

where υ1(R;d) is the d-dimensional volume of a sphere of radiusR given by (4.17). [Note
that (5.19) could also have been obtained by settingn � 0 andW � υE in the Poisson dis-
tribution formula (3.19).] Since the matrix volume fraction for fully penetrable spheres
is given by φ1 � exp(−η), the lineal-path function becomes

L(z) � φ1 + ωd−1
ωd

z
R

1 , (5.21)

where

ωd ≡ υ1(1;d) � πd/2

�(1 + d/2)
(5.22)

is the d-dimensional volume of a sphere of unit radius. For the first three space
dimensions (Lu and Torquato 1992a), we have

L(z) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ
1 + 1

2
z
R

1 , d � 1,

φ
1 + 2

π
z
R

1 , d � 2,

φ
1 + 3

4
z
R

1 , d � 3.

(5.23)

The case d � 3 is plotted in Figure 5.4.
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The probability of finding three points in the particle phase can be written as the sum of
the probabilities of three different events. The first diagram in (5.42) is the probability
that all three points fall in a single sphere. The next three two-body diagrams consti-
tute the probability that one point falls in one particle and the other two points fall in
a different particle. These two-body diagrams are not difficult to evaluate using exist-
ing accurate analytical approximations for g2 or via Monte Carlo simulations. Finally,
the last diagram is the probability that each point falls in different spheres. It is more
problematic to compute, since g3 is known less precisely than g2. One can resort to
superposition-type approximations for g3 (Section 3.2) or evaluate the three-body dia-
gram using Monte Carlo methods. The evaluation of Sn for n ≥ 4 becomes increasingly
unwieldy because of the difficulty involved in estimating the gn (see Section 3.2).

We note in passing that the probability of finding n points at positions rn in a single
sphere of a homogeneous totally impenetrable sphere system is given by

1
��
��

��
��

n
��
��

2

� ρυint
n (rn;R) � ρ

∫
dx

n∏
i�1

m(|ri − x|;R), (5.43)

where υint
n (rn;R) is the intersection volume of n spheres of radius R at positions rn; see

also (3.47). The one-body contribution to the n-point probability function S(2)
n is exactly

given by diagram (5.43).
Torquato and Lado (1985) found an exact analytical expression for the matrix two-

point function S2(r12) for an equilibrium system of hard rods of length D. This was
done by direct integration of the two-body diagram in (5.41) and use of the analytical
expression for g2 given by (3.54). After some simplification (Quintanilla and Torquato
1996b), their expression can be written in terms of the dimensionless distance x � r12/D

as

S2(x) � (1 − η)
M∑
k�0

1
k!

[ (x− k)η
1 − η

]k
exp

[
− (x− k)η

1 − η
]
, (5.44)

where M ≤ x ≤M+ 1.
In higher dimensions, one can evaluate (5.41) exactly through the first few terms in

a density expansion (Torquato and Stell 1985a). However, since g2 is not known ana-
lytically for arbitrary densities for d ≥ 2, one must necessarily utilize approximations
to evaluate the two-body diagram in (5.41). Since the two-body diagram is a double
convolution integral, then we can express it, for isotropic media, as

��
��

��
��

1 2

� φ2
2 + ρ2F−1[m̃2h̃], (5.45)

where F−1 denotes the inverse Fourier transform defined by (2.50), f̃ (k) is the Fourier
transform of a function f (r) (see Section 2.2.5), and h(r) � g2(r) − 1 is the total
correlation function defined by (3.30). For example, when d � 3, we have that
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0.0 0.5 1.0
η

1.0

1.1P

d=3

Figure 5.15 Mean nearest-neighbor distance �P (in units of diameter) versus packing fraction
η for a system of hard spheres (d � 3). Thin solid line is equilibrium prediction from (2.109)
and (5.98); open circles are corresponding simulation data. Thin dashed line is upper bound of
Theorem 5.1 for an equilibrium ensemble from (5.107). Thick dashed and solid lines are upper
bounds of Theorems 5.2 and 5.3, respectively. Shaded region is prohibited to ergodic, isotropic
systems of hard spheres according to Corollary 5.2.

�P ≤

⎧⎪⎪⎨
⎪⎪⎩

1 + (1 − η)3

24η(1 − η/2)
, 0 ≤ η ≤ ηf ,

1 + (ηc − η)
24ηgf (1)(ηc − ηf )

, ηf ≤ η ≤ ηc.
(5.107)

Figure 5.15 also depicts the prediction of the mean nearest-neighbor distance �P for
equilibrium hard spheres (d � 3) versus the packing fraction η as computed from defi-
nition (2.109) and formula (5.98). This prediction is seen to be in excellent agreement
with available simulation data (Torquato and Lee 1990, Rintoul and Torquato 1998).
In the limit η → ηc, this prediction of �P correctly goes to unity. Included in the figure
are the bounds of Theorems 5.1, 5.2, and 5.3. The upper bound of Theorem 5.1 is very
sharp (i.e., nearly exact) for packing fractions between freezing and the MRJ state,
becoming exact in the limit η→ ηc.

5.2.6 Pore-Size Functions

Torquato and Avellaneda (1991) used interrelation (2.84) and the approximate expres-
sion for HV (r) for hard spheres given by Torquato et al. (1990) to get the pore-size
functions P(δ) and F(δ). Slightly more accurate expressions for these functions can be
obtained using (5.91). The results from this latter approximation for P(δ) are plotted in
Figure 5.16 for φ2 � 0.5. Included in the figure are corresponding results for two other
values of the impenetrability parameter λ in the cherry-pit model (Section 3.1.2): λ � 0
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6.2.3 Lineal-Path Function

For the same reasons as in the monodisperse case (see Section 5.2.3), the series (6.19)
cannot be evaluated exactly for d ≥ 2. Lu and Torquato (1992c) found scaled-particle
approximations of the lineal-path function L(z) ≡ L(1)(z) for the matrix phase of a
system of polydisperse hard spheres in equilibrium. These results in any dimension d
are given by

L(z) � φ1 exp

[
−η ωd−1〈Rd−1〉

φ1ωd〈Rd〉
z

]
. (6.36)

For the first three space dimensions (Lu and Torquato 1992c), we have

L(z) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ1 exp
[

− η

2φ1〈R〉z
]
, d � 1,

φ1 exp
[

− 2η〈R〉
πφ1〈R2〉z

]
, d � 2,

φ1 exp
[

− 3η〈R2〉
4φ1〈R3〉z

]
, d � 3.

(6.37)

Whereas the expression for d � 1 is exact, the other expressions are accurate approxi-
mations. As in the case of overlapping spheres, we see that if one scales the distance z
in (6.36) by the length 〈Rd〉/〈Rd−1〉 (proportional to the average volume-to-surface ratio
of a sphere), results for L(z) for any polydispersivity collapse onto the monodisperse
curve [cf. (5.58)]. This turns out to be true for relation (6.38) for the chord-length
distribution function p(z). Therefore, Figure 5.8 for the monodisperse case also depicts
the corresponding polydisperse results when z is scaled in this manner.

6.2.4 Chord-Length Density Function

The chord-length density function p(z) ≡ p(1)(z) for the matrix phase of systems of poly-
disperse equilibrium hard spheres is easily obtained using expressions (2.68), (2.73),
and (6.36):

p(z) � η ωd−1〈Rd−1〉
φ1ωd〈Rd〉

exp
[
−η ωd−1〈Rd−1〉
φ1 ωd〈Rd〉

z
]
. (6.38)

Thus, in the first three space dimensions (Torquato and Lu 1993), we have

p(z) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η

2φ1〈R〉 exp
[

− η

2φ1〈R〉z
]
, d � 1,

2η〈R〉
πφ1〈R2〉 exp

[
− 2η〈R〉
πφ1〈R2〉z

]
, d � 2,

3η〈R2〉
4φ1〈R3〉 exp

[
− 3η〈R2〉

4φ1〈R3〉z
]
, d � 3.

(6.39)

The corresponding explicit expressions for the mean chord lengths are
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�C � φ1 ωd〈Rd〉
η ωd−1〈Rd−1〉 � ωd φ1d

ωd−1

1
s
, (6.40)

where we have used formula (6.33) for the specific surface s.

6.2.5 Nearest-Surface Functions

Using the definition (4.90) and series (4.81) for the canonical function Hn gives the
following series representation of the void nearest-surface exclusion probability func-
tion for any statistically homogeneous ensemble of totally impenetrable polydisperse
spheres:

eV (r) � 1 +
∞∑
k�1

(−1)k
1
k!

∫
· · ·
∫
dR1 · · ·dRkf (R1) · · · f (Rk)

× ρk(rk;R1, . . . , Rk)
k∏
j�1

m(|x − rj|; r)drj, (6.41)

where m(y; r) � �(r + R − y). Similarly, the corresponding relation for the particle
nearest-surface exclusion probability is obtained from (4.91) and (4.81), yielding

eP(r) � 1 +
∞∑
k�1

(−1)k
1
ρk!

∫
· · ·
∫
dR1 · · ·dRk+1f (R1) · · · f (Rk+1)

× ρk+1(rk+1;R1, . . . , Rk+1)
k+1∏
j�2

m(|r1 − rj|; r)drj. (6.42)

The results (6.41) and (6.42) were first given by Lu and Torquato (1992b). The series ex-
pressions for the other nearest-surface quantities are found using the above expressions
for the exclusion probabilities and interrelations (2.115) and (2.116).

The nearest-surface quantities must obey certain exact conditions for totally im-
penetrable spheres in any ensemble. In the case of the particle quantities, the reference
particle of radius R excludes the surface of any other particles from a sphere of radius
R, and therefore we have

eP(r) � 1, hP(r) � gP(r) � 0, 0 ≤ r ≤ R. (6.43)

In the case of the void quantities, the reference point can only be inside one of the par-
ticles, and hence the void nearest-surface exclusion probability and probability density
function for all allowable negative values of r (see Sections 2.8 and 6.1.5) are given
respectively by

eV (r) � 1 − ρ〈υ1(r + R)�(r + R)〉, r < 0, (6.44)

hV (r) � ρ〈s1(r + R)�(r + R)〉, r < 0. (6.45)

The function gV is just the ratio hV/eV , and henceforth for brevity we will just report
results for eV and hV .
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D1phase 2 phase 1 D1phase 2 phase 1D2

Figure 7.4 Schematics of two-dimensional laminates. Left panel: A portion of a random rank
1 laminate. Right panel: A portion of a random rank 2 laminate.

A random first-rank laminate is made by alternating layers of phase 1 and phase 2
materials according to some random process, as shown in Figure 7.4. A random second-
rank laminate is constructed in two stages. For simplicity, the first stage is taken to be
a series of parallel slabs of fixed width D1 oriented in the y-direction generated by some
one-dimensional random process. We define φ(1)

1 and φ(1)
2 to be the volume fractions of

the matrix phase (phase 1) and the included phase (phase 2), respectively. The second
stage of lamination adds perpendicular slabs of width D2 in the gaps of the first stage.
We define φ(2)

1 and φ(2)
2 to be the volume fractions of phases 1 and 2, respectively, for

the second-stage process (see Figure 7.4). Clearly,

φ
(1)
1 + φ(1)

2 � φ(2)
1 + φ(2)

2 � 1. (7.24)

Moreover, a point lies in phase 2 of the entire laminate exactly when its x-coordinate
lies in phase 2 of the first stage and its x-coordinate lies in phase 2 of the second stage
of lamination. Since these events are independent, we see that the volume fraction of
phase 2 of the entire laminate is given by

φ2 � 1 − φ1 � φ(1)
2 φ

(2)
2 . (7.25)

Useful one-dimensional models from which laminates can be constructed in-
clude fully penetrable rods, totally impenetrable rods, and one-dimensional “random
checkerboards.” Realizations of these three systems are shown in Figure 7.5; the
systems depicted have equal rod lengths and volume fractions of the phases. By a
one-dimensional “checkerboard” process we mean systems in which the line is divided
into equisized sections of width D. Each section, independent of the other sections,
belongs to phase 1 with probability φ1 and phase 2 with probability φ2. (The checker-
board model in higher dimensions is discussed in detail in Section 8.1.4.) By extending
these one-dimensional systems into higher dimensions, hierarchical laminates are
constructed.

Quintanilla and Torquato (1996b) showed that the two-point probability function
for phase 1 for two-dimensional second-rank laminates of arbitrary construction is
given by

S2(r) � L(1)(x)S(2)
2 (y) + [S(1)

2 (x) − L(1)(x)](φ(2)
1 )2. (7.26)
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1997). The characterization of the microstructure of random cellular materials is an
interesting problem and has been attacked from a variety of viewpoints.

Below we define and discuss the Voronoi and Delaunay tessellations. This is followed
by a brief description of certain cell statistics. We then discuss the n-point probability
functions for symmetric-cell materials in general and the random checkerboard model
in particular.

8.1.1 Voronoi and Delaunay Tessellations

A Voronoi tessellation is a certain fundamental partitioning (tiling) of d-dimensional
space into d-dimensional polyhedral cells (polytopes). This construction is also known
to mathematicians as a Dirichlet tessellation. Condensed-matter physicists refer to the
cells as Wigner–Seitz cells. The Voronoi tessellation and its dual (the Delaunay tes-
sellation) have been reinvented, given different names, generalized, and applied in
numerous different fields, including biology, meteorology, metallurgy, crystallogra-
phy, forestry, ecology, archaeology, geology, geography, astrophysics, physics, computer
science, and engineering (Aurenhammer 1991, Okabe, Boots and Sugihara 1992).

Consider a set ofN points or sites with positions r1, r2,. . .,rN in volume V in d spatial
dimensions. This set of positions may be deterministic (e.g., regular lattice) or random.
Associated with the ith point at ri is the Voronoi cell, which is defined to be the region
of space nearer to the point at ri than to any other point in the set. In two dimensions
such a cell is a convex polygon, whereas in three dimensions such a cell is a convex
polyhedron. In two dimensions, the boundary of the Voronoi polygon is composed of
segments of the perpendicular bisectors of each line (edge) that connects the point
at ri to its nearest-neighbor sites (points that share a Voronoi edge). An example is
indicated in Figure 8.1. In three dimensions, the boundary of the Voronoi polyhedron
is composed of planes that perpendicularly bisect each edge that connects the point
at ri to its nearest-neighbor sites (points that share a Voronoi face). We refer to the
set of all Voronoi cells associated with the N points as a Voronoi diagram. A Voronoi
diagram becomes a Voronoi tessellation when it extends to all of space. This extension
can be accomplished by taking the thermodynamic limit (see Section 3.1) or by the use
of periodic boundary conditions so that the volume V is surrounded by images of itself
ad infinitum.

Before discussing the Delaunay tessellation, it is useful to recall a few topological
definitions and results. Generally speaking, a graph is a topological object composed
of vertices and lines (or edges) connecting some subset of the vertices. A polyhedral
graph G is one in which each edge belongs to the face of a polyhedron. Therefore,
the network of edges (or bonds) that constitute the Voronoi tessellation is a special
polyhedral graph. In any graph, the number of edges joined to a particular vertex is its
coordination number Z. The dual graph G∗ of a polyhedral graph G has vertices each
of which corresponds to a face of G and each of whose faces corresponds to a vertex
of G. Finally, for any subdivision of a domain into a finite number of polyhedral cells
C, one can relate the number of vertices V , the number of edges E, and the number of
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Figure 8.1 Voronoi and Delaunay tessellations for points (black dots) in the plane. The Voronoi
polygons are indicated with solid lines, while the Delaunay triangles are indicated with dashed
lines.

faces F to each other via Euler’s formula:

F − E+ V � 1, (two-dimensional Euclidean space), (8.1)

F − E+ V − C � 1, (three-dimensional Euclidean space). (8.2)

Euler’s formula has also been generalized to non-Euclidean spaces (e.g., the surface of
a sphere or torus). It can be viewed as a conservation law, since it applies even if the
structure is evolving with time.

Given a Voronoi graph, the Delaunay graph results from joining all pairs of sites that
share a Voronoi face (nearest-neighbor sites) and divides all space into polyhedra. This
subdivision of space is called the Delaunay tessellation, and it is the unique dual of the
Voronoi tessellation. If the Delaunay tessellation consists only of simplices, i.e., simplest
polyhedra (triangles in two dimensions and a tetrahedra in three dimensions), then we
call it a Delaunay triangulation. If not, the Delaunay tessellation can still be triangulated,
but the resulting triangulation is no longer unique. We note that for random point
patterns, the Delaunay tessellation is almost always a triangulation of the space, except
for some rare symmetric subset of points.

Let us now consider some specific point patterns that lead to Voronoi tessellations
and may be used to model cellular materials. We will first give examples of regular
point patterns (in two and three dimensions) that result in cells of regular shape. In
two dimensions, there are many regular point patterns that one can choose from, but
for simplicity we will limit ourselves to some well-known patterns resulting in cells of
identical shape and size that tile the plane. As shown in Figure 8.2, points arranged on
a regular triangular lattice lead to Voronoi cells that are regular hexagons. (Note that the
corresponding Delaunay tessellation is the regular triangular graph.) The Voronoi cells
associated with points arranged on a regular honeycomb lattice are regular triangles.
Thus, the triangular-lattice graph is the dual of the honeycomb-lattice graph. (Observe
that the Delaunay tessellation of the honeycomb lattice is not a triangulation.) Since
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Figure 8.5 Four examples of two-dimensional two-phase symmetric-cell materials at the area
fraction φ1 � φ2 � 0.5. Top left: Square cells (random checkerboard model). Top right: Triangular
cells. Bottom left: Hexagonal cells. Bottom right: Randomly shaped cells generated from RSA
hard-disk centers.

probability density function ρn.] We will also make some specific remarks about the
two- and three-point quantities. The derivation below is considerably simpler than
the one given by Miller (1969) and more general (he considered only the three-point
quantity).

n-Point Probability Function
Let Sn(xn) ≡ S

(1)
n (xn) and Ŝn(xn) ≡ S

(2)
n (xn) denote the probability that n points at posi-

tions xn ≡ {x1, x2, . . . , xn} fall in the white phase and black phase, respectively. Then we
can express the n-point quantities as

Sn(xn) �
n∑
k�1

P(k)
n (xn), for all n, (8.11)

Ŝn(xn) �
n∑
k�1

P̂(k)
n (xn), for all n, (8.12)

where, for any 1 ≤ k ≤ n,

P(k)
n � Probability that n points fall in k different white cells, (8.13)

P̂(k)
n � Probability that n points fall in k different black cells. (8.14)
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and

VS �
∑∞
k�1 knkVk∑∞
k�1 knk

�
∞∑
k�1

knkVk. (9.37)

Here VQ is the “average cluster volume,” or the average volume of a randomly chosen
cluster. The quantityVS is the “particle-averaged cluster volume,” or the average volume
of the cluster containing a randomly chosen particle.

The percolation probability P(φ2) is the probability that an arbitrarily selected
particle belongs to the infinite cluster. Therefore, for an infinite system,

P(φ2)

{
� 0, if φ2 < φ2c,

> 0, if φ2 > φ2c.
(9.38)

The percolation-threshold value φ2c is defined formally as φ2c � sup{φ2 : P(φ2) � 0} and,
for the same reasons given in Section 9.1.1, is a nonuniversal quantity. Note that P(φ2)
is equivalent to the fraction of the particle-phase volume fraction φ2 that is connected.

The pair-connectedness function P2(r) can be obtained for a general isotropic system
of spheres by decomposing the radial distribution function g2(r) defined in Chapter 3
into a “connected” part and a “disconnected” part (Coniglio, De Angelis and Forlani
1977), i.e.,

g2(r) � P2(r) + B2(r), (9.39)

where

ρ2P2(r) � Probability density function associated with
finding two particles (whose centers are
separated by a distance r) in the same cluster,

(9.40)

ρ2B2(r) � Probability density function associated with
finding two particles (whose centers are sep-
arated by a distance r) not in the same
cluster.

(9.41)

The quantityB2(r) is referred to as the pair-blocking function. The decomposition (9.39)
is elaborated on in Section 10.2.

The mean cluster size S is related to the pair-connectedness function P2 via the
expression (Coniglio et al. 1977)

S � 1 + ρ
∫
P2(r)dr. (9.42)

This relation is completely analogous to the compressibility equation (3.15) that arises
in the study of the liquid state. Note that the asymptotic form of P2(r) for large r at the
percolation threshold is still given by (9.7) and thus ensures that the mean cluster size
(9.42) will diverge when φ2 � φ2c.
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r

Figure 9.11 Two possible ways in which the end points of a line segment of length r can land
in phase 2 (gray region) when randomly tossed into an isotropic medium: (1) end points fall in
the same cluster (bold lines) or (2) end points fall in different clusters (lighter lines).

The quantity E2 is called the two-point blocking function.
Clearly, C2 generally contains nontrivial connectedness information and therefore is

a better signature of the microstructure than S2. To emphasize this point, Figure 9.11
schematically depicts an arbitrary isotropic continuum model in which lines of length
r � |x2 − x1| are shown. The bold lines represent events that contribute only to C2(r),
whereas all of the lines (bold and lighter ones), except the one falling entirely in the
matrix, represent events that contribute to S2(r). This clearly shows that S2 generally
does not distinguish between clustering and nonclustering events. One exception to this
would be systems containing a very few but fractal clusters. For a single fractal cluster
(e.g., the diffusion-limited aggregation cluster discussed in Chapter 12), S2(r) � C2(r)
falls off as rdF−d (Family 1993), and therefore the corresponding Fourier transform or
scattering intensity i(k) (Section 2.2.5) scales as k−dF (Thompson et al. 1987), where dF
is the fractal dimension. The quantity C2 is discussed further in Chapter 10.

9.2.3 Critical Exponents

Near criticality, the quantities P, S, and ξ have the same type of scaling behavior as in
lattice percolation, i.e.,

P ∼ (φ2 − φ2c)β, φ2 → φ+
2c, (9.46)

S ∼ |φ2 − φ2c|−γ , φ2 → φ2c, (9.47)

ξ ∼ |φ2 − φ2c|−ν, φ2 → φ2c. (9.48)

For the model of overlapping particles of various shapes, many previous studies (Haan
and Zwanzig 1977, Gawlinski and Stanley 1981, Kertesz and Vicsek 1982, Elam,
Kerstein and Rehr 1984, Lorenz, Orgzall and Heuer 1993) have indicated that the
geometrical critical exponents, β, γ, and ν, are in the same universality class as lat-
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Figure 12.11 A template to sample for S2 or S3 in two-dimensional homogeneous media. The
grid spacing need not be regular as shown here.

This process is repeated for each realization, and the final result for S1 is obtained by
averaging over all realizations. Execution speed to check the overlap condition (12.10)
can be increased significantly using a cell list (Haile et al. 1985), which identifies the
sphere centers that are in some small subvolume of the system. When the randomly
placed point lands in a particular subvolume, then condition (12.10) is checked only for
those centers located in the subvolume and its immediate neighboring subvolumes. The
one-point function S1 has been evaluated from simulations for spheres in the cherry-pit
model as a function of the impenetrability parameter (Lee and Torquato 1988a).

For statistically homogeneous but anisotropic particle systems (e.g., oriented ellip-
soids or cylinders), it is better to compute the two-point functionS2(r) (where r � x2−x1)
by randomly tossing many line segments of length r � |r| with fixed orientation (spec-
ified by the vector r) into each realization, measuring the fraction of times that both
ends of the line segment lie outside the particles, and averaging over all realizations.
For statistically isotropic media, S2(r) is found in the same way except that the line
segments are randomly oriented.

For both isotropic and anisotropic (but homogeneous) d-dimensional media, effi-
ciency can be improved by randomly tossing a “sampling template” consisting of a grid
of many points (Smith and Torquato 1988), as depicted in Figure 12.11 for d � 2. Many
line segments (in which one end is always at the template origin) of variable lengths
and orientations are contained in a template. Sampling templates at many locations
(say 10,000 or more) are used to sample each realization. This will yield the two-point
function S2(r) that will depend on the vector displacement r for anisotropic media. If
the medium is isotropic, then S2(r) will depend only on the distance r � |r| and hence
is obtained by averaging over all orientations of r. The function S2 has been computed
for equilibrium hard spheres (Haile et al. 1985) and RSA disks in the cherry-pit model
(Smith and Torquato 1988).
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ε11 � 0, ε22 � ε33 � ε.
Letting

τ22 � τ33 � τ,
we find from (13.74) that

τ � 2k23ε,

where

k23 � 1
2

(C22 + C23) (13.75)

is the plane strain or transverse bulk modulus.
Now consider a simple state of uniaxial stress, i.e.,

τ11 �� 0, τ22 � τ33 � τ12 � τ23 � τ13 � 0.

For such a state, (13.74) reveals that

τ11 � E11ε11,

where

E11 � C11 − 2C2
12

C22 + C23
(13.76)

is the longitudinal Young’s modulus. The Poisson ratios that characterize the typical
lateral contraction (expansion) that accompanies uniaxial tension (compression) in the
x1-direction are defined by the relations

ν12 � −ε22

ε11
, ν13 � −ε33

ε11
.

Generally, νij is Poisson’s ratio, where the first index i indicates the direction of the
imposed stress or strain and the second index j indicates the response direction. For
the aforementioned uniaxial stress state, we have from (13.74) that

ν12 � ν13 � C12

C22 + C23
. (13.77)

The directly measurable shear moduli are defined in the usual way, i.e.,

G12 � G13 � C66, (13.78)

G23 � 1
2

(C22 − C23). (13.79)

Using the relations above, we can express the five coefficients of (13.73) in terms of the
directly measurable moduli:

C11 � E11 + 4ν2
12k23, C12 � 2k23ν12,

C22 � k23 +G23, C23 � k23 −G23, C66 � G12.
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Here p(x, t) is the pressure, ρ is the constant fluid density, ν is the kinematic viscosity,
υ0 is a constant speed, e is an arbitrary unit vector in the direction of the applied field,
and δ(t) is the Dirac delta function. It will be implicit in all of the ensuing discussion
that we assume a zero-traction condition at the boundary of V.

The solution of (13.210)–(13.212) can be expressed as a sum of normal modes as
follows:

υ(x, t)
υ0

�
∞∑
n�1

bne
−t/�n� n(x), (13.213)

where the vector eigenfunctions � n satisfy

�� n + ∇Qn � −εn� n in V1(ω), (13.214)

∇· � n � 0 in V1(ω), (13.215)

� n � 0 on ∂V(ω). (13.216)

Here the �n � 1/(νεn) are viscous relaxation times, and so the nth eigenvalue εn has
dimensions of (length)−2. The functionsQn in (13.214) are the corresponding pressures.
The eigenfunctions � n are orthonormal, so that

1
V1

∫
V1

�m(x)·� n(x)dx � δmn, (13.217)

and the eigenfunction expansion coefficients are given by

bn � 1
V1

∫
V1

e·� n(x)dx. (13.218)

Here V1 � φ1V denotes the total pore volume.
Note that the set of orthonormal eigenfunctions � n is complete in the closed sub-

space of square integrable divergence-free fields having zero normal component on
∂V (Temam 1979). According to the classical Hodge decomposition (Temam 1979), we
can express the constant unit vector e as the sum of a solenoidal field, with vanish-
ing normal component on the pore–solid interface, and the gradient of a potential, as
follows:

e � E + ∇ϕ. (13.219)

Here E is a dimensionless field satisfying

∇ · E � 0 in V1(ω), (13.220)

E · n � 0 on ∂V(ω), (13.221)

where n is the unit outward normal from the pore region. Relation (13.219) implies
that

∇ × E � 0 in V1(ω). (13.222)

We observe that the field E then solves the corresponding electric conduction problem
for a porous medium filled with a conducting fluid of conductivity σ1 and having an
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(1968) demonstrated how to extend variational principles for the conductivity of ho-
mogeneous bodies with prescribed homogeneous boundary conditions to variational
principles for the effective conductivity of random media. The minimum principles
given below follow Beran’s approach, but we give more details and treat boundary
terms differently.

Theorem 14.3 Minimum Potential Energy:
Let AU be the class of trial intensity fields Ê defined by the set

AU � {ergodic Ê; ∇ × Ê � 0, 〈Ê〉 � 〈E〉}, (14.37)

and let

W[Ê] � 1
2

〈Ê(x) · σ (x) · Ê(x)〉 (14.38)

be the trial energy functional, where σ is the local conductivity tensor. Then, among all
trial fields Ê, the field that makes the associated flux solenoidal is the one that uniquely
minimizes the trial energy functional W[Ê]. In other words,

W[E] ≤W[Ê] ∀Ê ∈ AU, (14.39)

or, equivalently,

1
2

〈E〉 · σ e · 〈E〉 ≤ 1
2

〈Ê · σ · Ê〉 ∀Ê ∈ AU, (14.40)

where E satisfies (14.14).

Proof: Let the “difference” field G be defined by

G � Ê − E

such that the trial field Ê satisfies

∇ × Ê � 0, 〈Ê〉 � 〈E〉.
Thus, 〈G〉 � 0, and since both E and Ê are irrotational, G is also irrotational, implying
that it can be written as the gradient of a scalar φ, i.e.,

G � −∇φ.
Consider the identity

〈Ê · σ · Ê〉 � 〈E · σ · E〉 + 2〈G · σ · E〉 + 〈G · σ · G〉.
We now prove that the middle term of this identity is identically zero. Formula (14.8)
for integration by parts with A � φ and B � J � σ · E gives

〈G · σ · E〉 � −〈∇φ · J〉
� − lim

V→∞
1
V

∫
S

φ(J · n)dS+ lim
V→∞

1
V

∫
V

φ(∇ · J)dV

� − lim
V→∞

1
V

∫
S

φ′(J′ · n)dS � 0. (14.41)
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The third line of (14.41) follows after decomposing φ and J into their mean and fluc-
tuating parts (as in the proof of Theorem 14.1), using the condition 〈G〉 � 0, and
employing the fact that J is solenoidal. The integral in the third line of (14.41) involv-
ing the fluctuating fields is zero by ergodicity. Using this result in combination with
energy representation (14.31) gives

〈Ê · σ · Ê〉 � 〈E〉 · σ e · 〈E〉 + 〈G · σ · G〉,
and since the second term on the right side is greater than or equal to zero, the state-
ment (14.40) is proved. The equality sign holds only when the difference field G is zero
throughout V, i.e., when Ê � E.

If there were another field E∗ from the set AU , different from E but with a solenoidal
flux, then we could apply the above theorem first to E∗ and then to E, yielding the
contradictory results that W[E∗] > W[E] and W[E] > W[E∗]; therefore, E is unique.

Remarks:
1. In words, the minimum potential principle states that the actual macroscopic energy
W[E] is bounded from above by the trial macroscopic energyW[Ê] and thus leads to
an upper bound σ Ue on the effective conductivity tensor σ e in the positive semidefinite
sense [cf. (13.16)].

2. Theorem 14.3 applies as well to periodic media (Bensoussan et al. 1978). Boundary
terms are now over the unit cell and vanish because of periodicity.

3. In the parlance of variational calculus, the difference field G (defined in the proof
above) is the first variation of the trial field, denoted by δÊ. One seeks the minimizer
of the first variation of the trial energy functional, which we have done. Through-
out this chapter, however, we will avoid this language and notation, since it is less
accessible to the nonspecialist.

Theorem 14.4 Minimum Complementary Energy:
Let AL be the class of trial flux fields Ĵ defined by the set

AL � {ergodic Ĵ; ∇ · Ĵ � 0, 〈Ĵ〉 � 〈J〉}, (14.42)

and let

W[Ĵ] � 1
2

〈Ĵ(x) · σ −1(x) · Ĵ(x)〉 (14.43)

be the trial energy functional, where σ is the local conductivity tensor. Then among all
trial fields Ĵ, the field that makes the associated intensity field irrotational is the one that
uniquely minimizes the trial energy functional W[Ĵ], i.e.,

W[J] ≤W[Ĵ] ∀Ĵ ∈ AL, (14.44)

or, equivalently,

1
2

〈J〉 · σ −1
e · 〈J〉 ≤ 1

2
〈Ĵ · σ −1 · Ĵ〉 ∀Ĵ ∈ AL, (14.45)

where J satisfies (14.12).



366 14: Variational Principles

Proof: Let the “difference” field Qbe defined by

Q� Ĵ − J (14.46)

such that

∇ · Ĵ � 0, 〈Ĵ〉 � 〈J〉.

Therefore, 〈Q〉 � 0, and since both J and Ĵ are solenoidal, Qis also solenoidal, i.e.,

∇ · Q� 0.

Consider the identity

〈Ĵ · σ −1 · Ĵ〉 � 〈J · σ −1 · J〉 + 2〈Q· σ −1 · J〉 + 〈Q· σ −1 · Q〉.

Since E � σ −1 · J � −∇T, the middle term may be rewritten as

〈Q· σ −1 · J〉 � −〈Q· ∇T〉

� − lim
V→∞

1
V

∫
S

T(Q· n)dS+ lim
V→∞

1
V

∫
V

T(∇ · Q)dV

� − lim
V→∞

1
V

∫
S

T ′(Q′ · n)dS � 0. (14.47)

The second line of (14.47) follows from formula (14.8) with A � T and B � Q. The
third line results after decomposing T and Qinto their mean and fluctuating parts (as
in the proof of Theorem 14.1), using the condition 〈Q〉 � 0, and utilizing the fact that
∇ · Q � 0. The integral in the third line of (14.47) involving the fluctuating fields is
zero by ergodicity. Using this result in combination with energy representation (14.32)
gives

〈Ĵ · σ −1 · Ĵ〉 � 〈J〉 · σ −1
e · 〈J〉 + 〈Q· σ −1 · Q〉,

which proves the statement (14.45). The equality sign holds only when the difference
field Q is zero throughout V, i.e., when Ĵ � J. The uniqueness of J follows using the
same arguments as for Theorem 14.3.

Remarks:
1. In words, the minimum complementary energy principle states that the actual

macroscopic energy W[J] is bounded from above by the trial macroscopic energy
W[Ĵ]. Therefore, one can obtain an upper bound on the effective resistivity ten-
sor σ −1

e or a lower bound σ Le on the effective conductivity tensor σ e in the positive
semidefinite sense.

2. Theorem 14.4 also applies to periodic media (Bensoussan et al. 1978). Again,
boundary terms are over the unit cell and vanish because of periodicity.



370 14: Variational Principles

lim
V→∞

1
V

∫
S

u′ndS→ 0; (14.68)

i.e., the ratio of the surface integral of (14.68) to the volume V vanishes in the limit
V → ∞.

Similarly, for the large region of volume V and surface S, we can express the average
of the fluctuating part of the stress as

〈τ ′〉 ≈ 1
V

∫
V

τ ′dV

� 1
V

∫
V

∇ · (xτ ′)dV

� 1
V

∫
S

x(τ ′ · n)dS. (14.69)

The second line of (14.69) follows from the identity (14.7) with A � x and B � τ and
the fact that ∇ · τ � 0. The third line is obtained from the divergence theorem (14.1)
with A equal to the third-order tensor xτ ′. Since the traction is continuous across the
multiphase interface, the surface integrals over the interface make no contribution in
the application of the divergence theorem, and thus we do not bother to write such
terms explicitly. Hence, we see from (14.64) and (14.69) that in the infinite-volume
limit,

lim
V→∞

1
V

∫
S

x(τ ′ · n)dS→ 0. (14.70)

To summarize, ergodicity renders the boundary terms involving the fluctuating
quantities u′ and τ ′ in (14.68) and (14.70), respectively, to be zero. In the discussion
that follows, boundary terms of these types will arise and will be taken to be zero by
ergodicity.

14.2.2 Energy Representation

We recall from Section 13.3.1 that the energy stored per unit volume in a homogeneous
linearly elastic material (without body forces) is a positive quantity that is proportional
to the double dot product of the strain tensor and the stress tensor (Sokolnikoff 1956).
In the case of a heterogeneous linear material, we assume that the scalar energy stored
per unit volume u(x) at the point x is given by the same but local form, i.e.,

u(x) � 1
2

ε(x) : τ (x) ≥ 0. (14.71)

We will simply refer to u as the “microscopic energy,” which should not be confused
with the displacement vector u. Use of Hooke’s law (14.59) shows that the microscopic
energy is a nonnegative quadratic form in either the strain or the stress; i.e., one has
the equivalent but alternative forms

uε(x) � 1
2

ε(x) : C(x) : ε(x) (14.72)
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14.3 Trapping Constant

We will derive variational principles that will enable us to bound the trapping constant
γ (or, equivalently, mean survival time τ) from above and below. As in the case of the
conduction and elasticity problems, these variational bounds are based on minimizing
the “energy” of the system. First, it will be shown that the trapping constant has an
energy representation. We then will prove the minimum energy principles that lead to
rigorous upper and lower bounds on the trapping constant, or equivalently, the mean
survival time.

We will consider ergodic porous media with a trap-free, or pore, region V1 and a trap
region V2. Let the interface between the two regions be denoted by ∂V. Referring to
relations (13.148), (13.149), and (13.151), we see that the local equations for the scaled
concentration field in the instance of perfectly absorbing traps are given by

�u � −1 in V1, (14.115)

u � 0 on ∂V, (14.116)

where we extend u into the trap region V2 to be zero. The averaged relation that defines
the trapping constant γ is

γ−1 � 〈u I〉 � 〈u〉, (14.117)

where I ≡ I(1) is the indicator function for the trap-free region. The second equality in
(14.117) follows from the extension of u into V2.

14.3.1 Energy Representation

Recall that the trapping constant γ is the proportionality constant in the relation be-
tween the average concentration field and production rate per unit volume. We now
derive an energy representation for the trapping constant.

Theorem 14.11 For ergodic media, the trapping constant γ can be rewritten in terms of
the energy functional:

γ−1 � 〈∇u(x) · ∇u(x) I(x)〉. (14.118)

Proof: Let VR be a very large sphere of radius R centered at the origin in V, and let
∂VR be the surface of this sphere. Multiplying the diffusion equation (14.115) by u and
ensemble averaging yields

γ−1 � −〈u�u〉
� − 1

VR

∫
VR

〈u�u〉dV � −
〈

1
VR

∫
VR
u�udV

〉

�
〈

1
VR

∫
VR

∇u · ∇udV
〉
−
〈

1
VR

∫
∂VR
u
∂u

∂n
dS

〉
−
〈

1
VR

∫
∂V
u
∂u

∂n
dS

〉
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D2 phase 1 phase 2D1

Figure 16.6 An example of a two-dimensional second-rank laminate whose effective conduc-
tivity is exactly given by (16.8) in the limit D1/D2 → ∞. Here n(1) · n(2) � 0.

(
σ(2)
e

)
11

�
[
φ

(2)
1

σ1
+ φ

(2)
2

σ2

]−1

,
(
σ(2)
e

)
22

� σ1φ
(2)
1 + σ2φ

(2)
2 ,

where φ(j)
i is the volume fraction of phase i in the jth stage with φ2 � φ(1)

2 φ
(2)
2 . This result

immediately follows from our result (16.10) for the first-rank laminate but for d � 2.
The effective conductivity tensor of the entire laminate composite is therefore given by

σ e �
[

(σe)11 0

0 (σe)22

]
, (16.17)

where

(σe)11 � σ1φ
(1)
1 + (σ(2)

e )11φ
(1)
2 , (σe)22 �

[
φ

(1)
1

σ1
+ φ

(1)
2

(σ(2)
e ) 22

]−1

.

In order for the tensor (16.17) to be isotropic, we must have (σe)11 � (σe)22, implying
the volume fraction requirement

φ
(1)
1 � φ

(2)
1

φ
(2)
2

. (16.18)

It follows, after some algebra, that the corresponding isotropic effective conductivity
is given by

σe � 〈σ〉 − (σ2 − σ1)2φ1φ2

〈σ̃〉 + σ1
, (16.19)

where 〈σ〉 and 〈σ̃〉 are defined by the relations in (16.9). We recognize result (16.19) to
be identical to the exact expression for the coated-cylinder model given by (16.8) with
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x1

x2

Figure 16.9 Portion of a two-dimensional laminate of rank one.

It is simpler and instructive to consider first the calculation of Ce for the two-
dimensional laminate of rank 1 depicted in Figure 16.9. Let Ei and νi be the
two-dimensional (planar) Young modulus and Poisson ratio of phase i, respectively.
The local fields can depend at most upon the x1 coordinate when uniform fields are
imposed at the boundaries. The effective stiffness tensor for this laminate in plane
elasticity is most conveniently represented by the 3 × 3 matrix

Ce �

⎡
⎢⎢⎣

(Ce)11 (Ce)12 0

(Ce)12 (Ce)22 0

0 0 (Ce)66

⎤
⎥⎥⎦ , (16.43)

where

(Ce)11 �
〈
1 − ν2

E

〉−1

, (Ce)12 � 〈ν〉
〈
1 − ν2

E

〉−1

, (16.44)

(Ce)22 � 〈ν2〉
〈
1 − ν2

E

〉−1

+ 〈E〉, (Ce)66 � 〈
G−1〉−1

, (16.45)

and for any property c, 〈c〉 � c1φ1 + c2φ2. Since the effective Young moduli in the x1-
and x2-directions are given by

(Ee)11 � (Ce)11 − (Ce)2
12

(Ce)22
, (Ee)22 � (Ce)22 − (Ce)2

12

(Ce)11
,

we have that

(Ee)11 �
〈
1 − ν2

E

〉−1
[ 〈ν2〉 − 〈ν〉2 + 〈E〉

〈
1−ν2

E

〉
〈ν2〉 + 〈E〉

〈
1−ν2

E

〉
]
, (16.46)

(Ee)22 � 〈E〉 + (〈ν2〉 − 〈ν〉2)
〈
1 − ν2

E

〉−1

. (16.47)
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Moreover, since the effective shear modulus (Ge)12 is equal to (Ce)66, we have that

(Ge)12 � 〈G−1〉−1. (16.48)

We see that the effective Young modulus (Ee)22 is simply given by the arithmetic average
of the phase Young moduli when ν1 � ν2, and the effective shear modulus (Ge)12 is given
by the harmonic average of the phase shear moduli. Note that it is only when the phase
Poisson ratios are equal to zero (ν1 � ν2 � 0), that the effective Young modulus in the
x1-direction, (16.46), reduces to the harmonic average of the Young moduli, i.e.,

(Ee)11 � 〈E−1〉−1 . (16.49)

We now derive result (16.43). Let us consider applying three independent uniform
strain fields: a uniaxial strain ε0

11 in the x1-direction, a uniaxial strain ε0
22 in the x2-

direction, and a uniform shear strain ε0
12. The local fields must satisfy the equilibrium

equations in each phase, i.e.,

∂τ11

∂x1
+ ∂τ12

∂x2
� 0, (16.50)

∂τ12

∂x1
+ ∂τ22

∂x2
� 0, (16.51)

and also obey Hooke’s law in each phase:

τ11(x1) � E(x1)
1 − ν2(x1)

[
ε11(x1) + ν(x1)ε22(x1)

]
, (16.52)

τ22(x1) � E(x1)
1 − ν2(x1)

[
ν(x1)ε11(x1) + ε22(x1)

]
, (16.53)

τ12(x1) � 2G(x1)ε12(x12). (16.54)

Since the local fields are independent of x2, it follows from (16.50) and (16.51) that
τ11(x1) and τ12(x1) are constants throughout the composite:

τ11(x1) � 〈τ11〉, τ12(x1) � 〈τ12〉.
Moreover, it follows that the local strain in the x2-direction must be a constant
throughout the composite:

ε22(x1) � 〈ε22〉 � ε0
22.

The average of the strain component ε11(x1) must satisfy the boundary condition

〈ε11〉 � ε0
11.

Therefore, from expression (16.52), we see that the 11-component of strain must be
a piecewise constant function according to the relation

ε11(x1) � 1 − ν2(x1)
E(x1)

〈τ11〉 − ν(x1)〈ε22〉. (16.55)

Averaging (16.53) [after use of (16.55)], (16.54), and (16.55) yields the averaged
constitutive relations
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Table 16.1 Coefficients in the low-concentration asymptotic expressions.

Lattice a1 a2 a3 a4

SC −1.396 1.714 2.889 −3.077
BCC 0.430 −0.520 −6.163 3.373
FCC 0.388 −0.411 −5.928 2.750

Notice that result (16.62) for the effective bulk modulus is identical to the exact ex-
pression for the coated-cylinder model given by (16.41) with d � 2. Unlike the effective
shear modulus expression (16.63), the effective bulk modulus expression (16.62) is also
exact for a square symmetric second-rank laminate, an example of which is depicted in
Figure 16.6.

16.2.4 Periodic Arrays of Inclusions

Nunan and Keller (1984) studied the effective moduli of the three cubic arrays of rigid
spheres in a matrix (phase 1). Such a composite has cubic elastic symmetry, and there-
fore the effective stiffness tensor is specified by three elastic moduli (see Section 13.3.2)
according to the relation

(Ce)ijkl � (λ1 +G1γ)δijδkl +G1(1 + β)(δikδjl + δilδjk) + 2G1(α− β)δijkl. (16.64)

This expression corrects a misprint contained in Nunan and Keller (1984). Here λ1 �
K1 − 2G1/3 is the matrix Lamé constant, and δijkl is equal to one if all the subscripts
are equal and zero otherwise. They found low-density asymptotic relations for the
parameters α, β, and γ as follows:

α � 15
2

(1 − ν1)φ2

4 − 5ν1

[
1 −

(
1 − 3a1

4 − 5ν1

)
φ2 + 3a2

4 − 5ν1
φ5/3

2 + O (φ7/3
2

)]−1

,

β � 15
2

(1 − ν1)φ2

4 − 5ν1

[
1 −

(
1 + 2a1

4 − 5ν1

)
φ2 − 2a2

4 − 5ν1
φ5/3

2 + O (φ7/3
2

)]−1

,

γ � 3(1 − ν1)φ2

(1 − 2ν1)(4 − 5ν1)

[
1 −

(
3ν1 + (1 − 2ν1)a3

4 − 5ν1

)
φ2 + (1 − 2ν1)a4

4 − 5ν1
φ5/3

2 + O (φ7/3
2

)]−1

.

The coefficients ai in these formulas depend upon the lattice geometry, but not the
matrix Poisson ratio ν1, and are summarized in Table 16.1.

Consider the opposite asymptotic regime of nearly close-packed spheres. The elastic
interaction between spheres near the maximum close-packing density is concentrated
in the regions near the points of contact, as observed by Flaherty and Keller (1973) and
Nunan and Keller (1984). A local analysis of the region between two nearly touching
spheres, in conjunction with knowledge of nearest-neighbor locations, produces the
dominant contribution of the interaction for the entire sphere.
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For cylinders of arbitrary shape, we can write

k � γ−1 � φ3
1

cs2
, (16.99)

where c is a shape-dependent constant (e.g., c � 2 for circles, c � 5/3 for equilateral
triangles, and c � 1.78 . . . for squares). Equation (16.99) has been applied as an em-
pirical relation for isotropic porous media of arbitrary microstructure; c then is some
adjustable parameter (c � 5 models many porous media well). This empirical equation
has a special status in the literature and is referred to as the Kozeny–Carman relation.

The determination of the permeability for flow past dilute arrays of obstacles is
treated in Chapter 17.

16.4.2 Periodic Arrays of Obstacles

Hasimoto (1959) obtained low-concentration asymptotic formulas for the fluid per-
meability k associated with slow viscous flow past spheres of radius R arranged on
the sites of the three cubic lattices. Specifically, he found that the dimensionless fluid
permeabilities are given by

k

ks
� 1 − 1.76011φ1/3

2 + φ2 − 1.5593φ2
2 + O (φ8/3

2

)
, (SC), (16.100)

k

ks
� 1 − 1.79186φ1/3

2 + φ2 − 0.329φ2
2 + O (φ8/3

2

)
, (BCC), (16.101)

k

ks
� 1 − 1.79175φ1/3

2 + φ2 − 0.302φ2
2 + O (φ8/3

2

)
, (FCC), (16.102)

where ks � (2R2)/(9φ2) is the Stokes permeability in the infinitely dilute limit (see
Chapter 19). The coefficients multiplying φ1/3

2 in the above expressions are identical to
those in (16.88) up to the significant figures indicated. Sangani and Acrivos (1982) have
obtained asymptotic relations for the fluid permeabilities for all three lattices to very
high order in φ2.

Hasimoto also obtained low-concentration asymptotic expressions for the fluid per-
meability k associated with flow past a square array of circular cylinders of radius R.
He found that

k

k0
� − ln φ2 − 1.4763 + 2φ2 + O(φ2

2), (16.103)

where k0 � R2/(8φ2). For the hexagonal array, Sangani and Acrivos obtained

k

ko
� − ln φ2 − 1.4975 + 2φ2 + O(φ2

2). (16.104)

Sangani and Acrivos (1982) have also found higher-order asymptotic expressions for
these two-dimensional lattices.
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Table 17.1 Values of the coefficients Th and Ts defined by (17.102) for the limiting cases of
spheres, needles, and disks in three dimensions. For needles, E1 ≡ G1(3K1 + G1)/(3K1 + 7G1),
and for disks, H2 � G2(3K2/2 + 4G2/3)/(K2 + 2G2). Corresponding values of Nh and Ns are easily
obtained from the formulas (17.101). Note that the results for spheres agree with terms of (17.84)
for d � 3.

Inclusion Shape Th Ts

Spheres K1+4G1/3
K2+4G1/3

G1+H1
G2+H1

Needles K1+G1+G2/3
K2+G1+G2/3

1
5

[
4G1

G1+G2
+ 2G1(G1+E1)

(G2+E1) + K2+4G1/3
K2+G1+G2/3

]

Disks K1+4G2/3
K2+4G2/3

G1+H2
G2+H2

17.3 Trapping Problem

17.3.1 Spherical Trap

We are interested in obtaining the concentration field exterior to a spherical trap of
radius R. This is a classical problem dating back to the work of Smoluchowski (1917).
According to the local equation (13.136), the steady-state concentration field satisfies
a Poisson equation subject to the appropriate boundary conditions. This system of
equations can be replaced by a Laplace equation for the concentration field, with the
production term in the Poisson equation replaced by a uniform concentration field at
infinity.

Consider inserting a partially absorbing three-dimensional spherical trap with ra-
dius R and surface rate constant κ into an infinite medium in which the unperturbed
concentration field is the uniform value C0. Let r be the position vector emanating from
the trap center (see Figure 17.4). Under steady-state conditions, the local concentration
field c(r) depends only on the radial distance r ≡ |r| and is governed by

�c(r) � 1
r2

∂

∂r

(
r2
∂c

∂r

)
� 0, r ≥ R, (17.103)

D ∂c
∂r

� κc, r � R, (17.104)

c � C0, r → ∞. (17.105)

The general form of the solution of this diffusion equation is given by

c(r) � A+ B

r
, r ≥ R. (17.106)



452 17: Single-Inclusion Solutions

θ

r

z
R

C 0

Figure 17.4 Coordinate system for a spherical trap of radius R in an infinite medium with
constant concentration field C0 at infinity.

Application of the boundary conditions reveals that

A � C0, B � C0κR
2

D + κR,

and therefore the desired solution is

c(r) � C0

[
1 + κR

D + κR
(
R

r

)]
, r ≥ R. (17.107)

The total flux JT into the sphere can be calculated by integrating the normal flux over
the surface of the sphere, i.e.,

JT �
∫
r�R

−D ∇c · n R2d�

� 4π κR2DC0

κR+ D , (17.108)

where d� is the differential solid angle contained in a three-dimensional sphere.
In the diffusion-controlled case (κR/D � ∞), the solution (17.107) gives

c(r) � C0

[
1 −

(
R

r

)]
, r ≥ R, (17.109)

and the total flux (17.108) becomes

JT � 4πRDC0. (17.110)

Of course, in the reaction-controlled case (κR/D � 0), the solution (17.107) is trivial,
i.e., c � C0 and JT � 0, since there is no absorption.

The solution of the concentration field obtained above for a spherical trap in three
dimensions has no analogue in two dimensions. Specifically, there is no solution of
the Laplace equation for a circular trap in an infinite medium with an unperturbed
concentration field C0 that simultaneously satisfies the condition c � 0 on the trap
surface and the boundary condition at infinity. The nonexistence of such a solution is
the analogue of Stokes’s paradox, described in the next section in the case of uniform
flow past a circular disk.
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The concentration field for a d-dimensional spherical trap of radius R for any d ≥ 3
can be obtained from the boundary value problem

1

rd−1

∂

∂r

(
rd−1 ∂c

∂r

)
� 0, r ≥ R, (17.111)

D ∂c
∂r

� κc, r � R, (17.112)

c � C0, r → ∞. (17.113)

The solution of this boundary value problem is

c(r) � C0

[
1 + κR

(d− 2)D + κR
(
R

r

)d−2
]
, r ≥ R. (17.114)

The total flux JT into the sphere is then

JT �
∫
r�R

−D ∇c · n Rd−1d�

� (d− 2)� κRd−1DC0

κR+ (d− 2)D , d ≥ 3 (17.115)

where�(d) is the total solid angle contained in a d-dimensional sphere, given by (2.56).
In the diffusion-controlled case (κR/D � ∞), the solution (17.114) becomes

c(r) � C0

[
1 −

(
R

r

)d−2
]
, r ≥ R. (17.116)

From (17.115), we find that the total flux in this instance becomes

JT � (d− 2)� Rd−2DC0. (17.117)

17.3.2 Spheroidal Trap

Consider a perfectly absorbing spheroidal trap in three dimensions with semiaxes a1 �
a2 � a and a3 � b in which the concentration at infinity is C0. The concentration field
c outside of this trap is obtained by solving �c � 0 in spheroidal coordinates (η, θ, ψ)
(Abramowitz and Stegun 1972), with c(S) � 0 on the trap surface S and c � C0 at
infinity (Miller, Kim and Torquato 1991). The level surfaces of η (η � constant) are a
confocal family of spheroids having their common center at the origin. The trap surface
S, defined by η � η0, is related to the semiaxes a and b through

a �
√
b2 − a2 sinh η0, b �

√
b2 − a2 cosh η0, b ≥ a, (17.118)

a �
√
a2 − b2 cosh η0, b �

√
a2 − b2 sinh η0, b ≤ a. (17.119)

The coordinates θ and ψ are angles.
By symmetry, c is a function only of η and in prolate spheroidal coordinates (Miller

et al. 1991) the governing equations simplify as follows:
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We also discuss the behavior of the effective conductivity of isotropic media as d tends
to infinity.

20.1.1 Integral Equation for Cavity Electric Field

Consider a large but finite-sized ellipsoidal macroscopically anisotropic composite
specimen in arbitrary space dimension d composed of two isotropic phases with con-
ductivities σ1 and σ2. The shape of the composite specimen is purposely chosen to
be nonspherical, since any rigorously correct expression for the effective conductivity
tensor must ultimately be independent of the shape of the composite specimen in the
infinite-volume limit. The microstructure is perfectly general and possesses a charac-
teristic microscopic length scale that is much smaller than the semiaxes of the ellipsoid.
Thus, the specimen is virtually statistically homogeneous. Ultimately, we will take the
infinite-volume limit and hence consider statistically homogeneous media. The local
scalar conductivity σ(x) is expressible as

σ(x) � σ1I(1)(x) + σ2I(2)(x), (20.2)

where

I(p)(x) �
{

1, x in phase p,
0, otherwise,

(20.3)

is the indicator function for phase p (p � 1,2).
Now let us embed this d-dimensional ellipsoidal composite specimen in an infinite

reference phase q, which is subjected to an applied electric field E0(x) at infinity (see
Figure 20.1). The reference phase can be chosen to be arbitrary, but for our purposes,
we will take it to be either phase 1 or phase 2, i.e., q � 1 or q � 2. Introducing the
polarization field defined by

P(x) � [σ(x) − σq]E(x) (20.4)

enables us to reexpress the flux J, defined by Ohm’s law (13.6), as follows:

J(x) � σqE(x) + P(x). (20.5)

The vector P(x) is the induced flux polarization field relative to the medium in the
absence of phase p and hence is zero in the reference phase q and nonzero in the
“polarized” phase p (p �� q). Throughout the chapter, the indices p and q will be re-
served only for the polarized and reference phases, respectively. The choice of which is
the reference or polarized phase is arbitrary; all of the results are valid for any p �� q,
i.e., p � 1 and q � 2 or p � 2 and q � 1.

Under steady-state conditions without sources, the flux is divergence-free [cf.
(13.3)], and hence, with the aid of (20.5), this solenoidal condition can be rewritten
as

σq�ϕ̂(x) � ∇ · P(x), (20.6)
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H
(q)
ijkl

(r) � 1
2�[dKq + 2(d− 1)Gq]

1

rd

[
αqδijδkl − d(δikδjl + δilδjk) − dαq(δijnknl + δklninj)

+ d(d− αq)
2

(δiknjnl + δilnjnk + δjkninl + δjlnink) + d(d+ 2)αqninjnknl
]
,(20.102)

where

αq � dKq/Gq + (d− 2) (20.103)

is a dimensionless parameter. It is understood that integrals involving the fourth-order
tensor H(q) are to be carried out by excluding at x′ � x an infinitesimal sphere in the
limit that the sphere radius shrinks to zero. The tensor H(q)

ijkl
is symmetric with respect

to the first two indices, to the second two indices, and to interchange of ij and kl, i.e.,

H
(q)
ijkl

� H(q)
jikl

� H(q)
ijlk

� H(q)
klij
.

Moreover, the integral of H(q)(r) over the surface of a sphere of radiusR > 0 is identically
zero, i.e., ∫

r�R
H(q)(r)d� � 0. (20.104)

Some contractions of the tensor H(q) that will be of use to us in the subsequent
analysis are as follows:

H
(q)
ijkk

(r) � d

�[dKq + 2(d− 1)Gq]
1

rd
(dninj − δij), (20.105)

H
(q)
iikl

(r) � d

�[dKq + 2(d− 1)Gq]
1

rd
(dnknl − δkl), (20.106)

H
(q)
iikk

(r) � H(q)
ikik

(r) � 0. (20.107)

We will also utilize the following scalar identities:

H
(q)
iikl

(r)H(q)
kljj

(s) � d3

�2[dKq + 2(d− 1)Gq]2

1

rd

1

sd
[d(n · m)2 − 1], (20.108)

H
(q)
ijkl

(r)H(q)
klij

(s) � 1
4�2[dKq + 2(d− 1)Gq]2

1

rd

1

sd

{
d(d+ 2)α2

q[d(d+ 2)(n · m)4 − 3]

− d(5d+ 6)α2
q[d(n · m)2 − 1] + 2d2(d− 2)αq[d(n · m)2 − 1]

+ d3(d+ 2)[d(n · m)2 − 1]

}
, (20.109)

where m � s/|s| is a unit vector in the direction of s.
At this stage of the analysis, Torquato (1997) departed from previous treatments

by introducing an integral equation for the “cavity” strain field f. Specifically, upon
substitution of (20.100) into expression (20.99), we obtain the integral equation

f(x) � ε0(x) +
∫
ε

dx′H(q)(x − x′) : p(x), (20.110)
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onal polynomials. As in the case of the microstructural parameters M1 and M2, the
three-point parametersN1 andN2 are not independent of one another; specifically, one
has that

N1 +N2 � (d− 1)φ1φ2. (20.167)

This is shown using the fact that relation (20.163) yields the effective shear modulus
Ge exactly through third order in the difference in the moduli and that Ge remains
invariant under different labeling of the reference phase.

For any space dimension d, Torquato (1997) has shown that Np is related to a
parameter ηp that lies in the interval [0,1] via the relation

ηp � Np

(d− 1)φ1φ2

� − (d+ 2)(5d+ 6)
d2

ζp + (d+ 2)2

(d− 1)φ1φ2
J[S̄(p)

3 ], (20.168)

where ζp is given by (20.63). Thus, combining (20.167) and (20.168) gives

η1 + η2 � 1. (20.169)

As in the case of ζp, the d2-fold integral of the operator (20.166) can be reduced (by
integrating over angles) to a threefold integral over the lengths r, s, and t of the sides of
the triangle or, equivalently, over the two lengths r and s and the angle θ opposite the
side of length t, where t2 � r2 + s2 − 2rs cos θ, with cos θ � n · m. For d � 2, we recover
the result

ηp � 16
πφqφp

∫ ∞

0

dr

r

∫ ∞

0

ds

s

∫ π

0
dθ cos(4θ)

[
S

(p)
3 (r, s, t) − S

(p)
2 (r)S(p)

2 (s)
φp

]
, (20.170)

first given by Milton (1982), and for d � 3, we recover the result

ηp � 5ζp
21

+ 150
7φqφp

∫ ∞

0

dr

r

∫ ∞

0

ds

s

∫ 1

−1
d(cos θ)P4(cos θ)

[
S

(p)
3 (r, s, t) − S

(p)
2 (r)S(p)

2 (s)
φp

]
,

(20.171)

first given by Milton (1981b). Here P4 is the Legendre polynomial of order four.
As in the case of the operator (20.64) that defines ζ2, the operator (20.166) has two

simple properties: (i) If the function f does not depend on t, then

J[f (r, s)] � 0 (20.172)

by virtue of the orthogonality of the spherical harmonics; (ii) less obviously, if f depends
only on t, then

J[f (t)] � 2(3d2 + 8d+ 6)
d2

[f (0) − f (∞)], (20.173)
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Substitution of this last inequality into the three-point upper bound (21.40), under the
condition that σ 2 ≥ σ 1, yields the two-point upper bound (21.26). The corresponding
two-point lower bound can be obtained from the three-point lower bound in the same
fashion.

Using an elegant continued-fractions formalism, Milton (1987) derived formal n-
point bounds that, for n � 3, are equivalent to the Sen–Torquato anisotropic bounds.
The bounds are formal in that the microstructural parameters are not explicitly given
in terms of the n-point probability functions. However, important tensor properties
of the parameters follow readily from this treatment, which is not the case using the
approach of Sen and Torquato.

Four-Point Bounds
Four-point bounds on the effective conductivity can be derived using the aforemen-
tioned procedures. We will not derive such bounds here but will instead state four-point
bounds for isotropic media. Milton (1981a) was the first to derive such bounds. Sen and
Torquato (1989) found anisotropic analogues of these bounds, which in the isotropic
case and for σ2 ≥ σ1 reduce to the following form:

σ
(4)
L ≤ σe ≤ σ(4)

U , (21.42)

where

σ
(4)
L

σ1
� 1 + [(d− 1)φ2 − γ2/ζ2]β21 + (1 − d)[φ1ζ2 + φ2γ2/ζ2]β2

21

1 − [φ2 + γ2/ζ2]β21 + [φ1(1 − d)ζ2 + φ2γ2/ζ2]β2
21

, (21.43)

σ
(4)
U

σ2
� 1 + [(d− 1)φ1 − γ1/ζ1]β12 + (1 − d)[φ2ζ1 + φ1γ1/ζ1]β2

12

1 − [φ1 + γ1/ζ1]β12 + [φ2(1 − d)ζ1 + φ1γ1/ζ1]β2
12

, (21.44)

γ1 − γ2 � (d− 2)(ζ2 − ζ1), (21.45)

and

βij � σi − σj
σi + (d− 1)σj

, i �� j. (21.46)

The four-point bounds (21.42) depend upon φi, ζi, and the four-point parameters γi
[defined by (20.60) and related to a

(i)
4 of (20.52)], which depend upon S(i)

1 , S(i)
2 , S(i)

3 , and

S
(i)
4 . Note that for d � 2, the four-point parameters are exactly zero (γ1 � γ2 � 0), and

hence the four-point bounds depend only on the phase volume fractions and parameter
ζ2 � 1 − ζ1.

For d � 2, Milton (1981a) showed that the four-point bounds (21.42) are realized by
space-filling doubly-coated cylinders (circular disks in two dimensions). Each cylinder
(disk) is similar, within a scale factor, to any other multicoated cylinder in the com-
posite, and there is a distribution in their sizes ranging to the infinitesimally small (see
Figure 21.1). Note that when the radius of the inner cylinder goes to zero, i.e., ζi → 0
(i � 1,2), one recovers the singly coated cylinder assemblages corresponding to the
Hashin–Shtrikman two-point bounds.
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Figure 22.12 Bounds on the scaled effective transverse elastic moduli for a glass–epoxy com-
posite composed of aligned infinitely long nonoverlapping identical circular cylindrical fibers
in equilibrium versus fiber volume fraction φ2. Left panel: Bulk modulus from (22.30). Right
panel: Shear modulus from (22.55).
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Figure 22.13 Bounds on Ge/G1 versus φ2 for random equilibrium arrays of identical glass
spheres (d � 3) in an epoxy matrix. Experimental data are from Smith (1976).

modulusKe for this model. Included in the figure is the prediction of the three-point ap-
proximation (20.184), which, for reasons given in Section 20.2.5, is expected to provide
a fairly accurate estimate of Ke. The bounds are qualitatively similar to the correspond-
ing conductivity bounds for perfectly insulating overlapping spheres (see Figure 22.7)
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Figure 22.18 Comparison of bounds on the scaled inverse fluid permeability (resistance) ks /k

for equilibrium arrays of identical three-dimensional nonoverlapping spheres of radius R ver-
sus sphere volume fraction φ2. Included is two-point interfacial-surface lower bound (21.140),
optimized three-point cluster lower bound described below, cross-property bound (23.50), and
empirical Kozeny-Carman relation (16.99) with c � 5. Here ks � 2R2/(9φ2).

Figure 22.18 compares, for equilibrium nonoverlapping spheres, the lower bound
on k, or equivalently, upper bound on the inverse fluid permeability (resistance) k−1,
obtained from (21.140), to the optimized three-point cluster lower bound described
in Section 22.4.3 and the cross-property bound (23.50) that utilizes information about
the mean survival time. Included in the figure is the empirical Kozeny-Carman relation
(16.99) with c � 5. It is seen that the three-point bound is superior to the two-point
bound. However, the cross-property bound is the sharpest.

The two-point interfacial-surface upper bound (21.140) also has been computed
for dilute concentrations of identical spheres of radius R in the equilibrium cherry-
pit model (Torquato and Beasley 1987). This upper bound, for d � 3, becomes the
following lower bound on the resistance k−1:

ks

k
≥ 1 +

(
15
8

+ 25
8
λ

)
φ2 + O(φ2

2). (22.82)

Note that this result for the scaled resistance is identical to (22.62) for the scaled trap-
ping constant. Again, as before, the effect of increasing the impenetrability index λ is
to increase the scaled resistance.

The interfacial-surface bound has been computed for overlapping spherical grains
with a continuous size distribution (Torquato and Lu 1990). These results are sum-
marized in Figure 22.19, where the scaled resistance ks/k is plotted versus φ2 for the
Schulz distribution (6.5). The generalized dilute Stokes result for polydisperse spheres
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This class includes packed beds of particles, soils, and sandstones. They showed that
bound (23.69) can be violated for porous media containing many isolated pores and
dead-end regions whose sizes are on the order of or smaller than the exact effective
length scale L appearing in (23.51). Relation (23.69) cannot be generally true, since
from Theorem 13.3, T1 ≥ τ.

4. There are two noteworthy approximate cross-property relations linking the perme-
ability k to diffusion parameters. Johnson, Koplik and Schwartz (1986) obtained the
following very useful three-dimensional approximation:

k ≈  2

8F
, (23.70)

where  2 is a dynamically weighted ratio of V1/S (pore volume to surface area)
involving the electric field, i.e.,

2
 

�
∫
S |E(x)|2dS∫
V1

|E(x)|2dV . (23.71)

Here S and V1 denote the pore–solid interface and pore phase, respectively. The
formula (23.70) provides a good estimate of k for a variety of porous media and is
usually superior to the well-known Kozeny–Carman relation (16.99), which just in-
volves the simple length scaleV1/S. Schwartz, Martys, Bentz, Garboczi and Torquato
(1993) found that the relation

k ≈ φ1Dτ
F

(23.72)

gives accurate estimates of the permeabilities of realistic models of porous media.
Coker et al. (1996) showed that it also provides a good estimate of the permeability
of a Fontainebleau sandstone. Note that relation (23.72) is obtained by multiplying
the right-hand side of (23.69) by φ1.

23.2.3 Viscous and Diffusion Relaxation Times

Using a classical Rayleigh–Ritz variational principle, Avellaneda and Torquato (1991)
proved that the principal viscous and diffusion relaxation times obey the inequality
stated immediately below.

Theorem 23.9 For any porous medium, the following inequality holds between �1 and
T1:

ν�1 ≤ DT1. (23.73)

Thus, a measurement of the viscous relaxation time �1 (inversely proportional to
the smallest eigenvalue of the Stokes operator) can be used to determine information
about the diffusion relaxation time T1, and vice versa. The relaxation time T1 can be
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flow in porous media
drag on a spheroid, 457–458
link between viscous and diffusion

relaxation times, 654–655
local equations, 345
spherical-inclusion solutions, 455–457
time-dependent equations, 354
two-scale expansion, 346
viscous relaxation times, 9, 355, 356,

650–654
fluid permeability

cluster expansions, 505–508
definition of, 7, 344, 347
dispersions, 436, 505–508, 587–590
energy representation, 383–384
flow between plates, 434–436
flow between tubes, 434–436
link to effective conductivity, 650–654
link to relaxation times, 650–654
link to trapping constant, 647–650
minimum energy variational principles,

385–389
percolation behavior, 484, 653
periodic arrays of obstacles, 436
phase-interchange relations, 402
positivity of, 384–385
sandstones, 629, 630
screening effects, 483, 508
security-spheres bounds, 589–590, 631
self-consistent approximations, 481–484
three-point bounds, 588–589, 630
two-point bounds, 585–588, 627–630

foams, 2, 188, 415
formation factor, 356
fractal dimension, 218, 222–223, 231, 280
fractals, 222–223, 226, 231, 280
frequency-dependent conductivity, 321

Gelation, 226
gels, 2, 222, 226, 293, 627
geological media, 3, 177, 288, 289, 291–293,

301, 606, 608, 627, 629, 630
geometric frustration, 78
glass transition, 77, 270
granular media, 2, 67, 88
graph, 189

Hard spheres
chord-length density function, 137–138,

171–172

conductivity bounds, 598–606, 609, 610
disorder–order transition, 75–77
elastic moduli bounds, 613–621
equilibrium ensembles, 67, 75–83
equilibrium phase diagram, 76–78
fluid permeability bounds, 627–628, 631
freezing point, 76, 78
hexatic phase, 78
lineal-path function, 136–137, 171
maximally random jammed state, 78,

88–95
mean nearest-neighbor distance, 147–151
metastable disordered branch, 76
n-point probability functions, 130–134,

169–170
nearest-neighbor functions, 139–147
nearest-surface functions, 172–176
point/q-particle correlation functions,

152–153, 176
pore-size functions, 151–152, 176
pressure of, 75–76
radial distribution function, 79–83
random sequential addition of, 67, 83–88
specific surface, 135, 170
surface correlation functions, 134–136,

170, 285
trapping constant bounds, 621–622,

625–626
volume fraction, 130, 169

hard-sphere potential, 66–68
heterogeneous material, 1
hierarchical materials, 17, 177, 183–187,

225, 404, 410–413, 424–426, 465, 472,
519, 524, 542, 544, 557, 558, 571, 572,
590, 609

homogenization theory, 16, 305–350

Icosahedral packing, 78
imaging techniques, 3, 17, 287
imperfect interfaces, 19, 310, 322
indicator function, see phase indicator

function and interface indicator
function

interaction potential, 65
interface indicator function, 25
Ising model, 201–203, 216, 279

Kepler’s conjecture, 89
Kozeny–Carman relation, 436, 628, 654
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