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Heterogeneous materials consisting of different phases are ideally suited to achieve a broad spectrum of
desirable bulk physical properties by combining the best features of the constituents through the stra-
tegic spatial arrangement of the different phases. Disordered hyperuniform heterogeneous materials are
new, exotic amorphous matter that behave like crystals in the manner in which they suppress volume-
fraction fluctuations at large length scales, and yet are isotropic with no Bragg peaks. In this paper, we
formulate for the first time a Fourier-space numerical construction procedure to design at will a wide
class of disordered hyperuniform two-phase materials with prescribed spectral densities, which enables
one to tune the degree and length scales at which this suppression occurs. We demonstrate that the
anomalous suppression of volume-fraction fluctuations in such two-phase materials endow them with
novel and often optimal transport and electromagnetic properties. Specifically, we construct a family of
phase-inversion-symmetric materials with variable topological connectedness properties that remark-
ably achieves a well-known explicit formula for the effective electrical (thermal) conductivity. Moreover,
we design disordered stealthy hyperuniform dispersion that possesses nearly optimal effective con-
ductivity while being statistically isotropic. Interestingly, all of our designed materials are transparent to
electromagnetic radiation for certain wavelengths, which is a common attribute of all hyperuniform
materials. Our constructed materials can be readily realized by 3D printing and lithographic technologies.
We expect that our designs will be potentially useful for energy-saving materials, batteries and aerospace
applications.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Heterogeneous materials that consist of different phases (or
constituent materials) abound in nature and synthetic products,
such as composites, polymer blends, porous media, and powders
[1e4]. In many instances, the length scale of the inhomogeneities is
much smaller than the macroscopic length scale of the material,
and microscopically the material can be viewed as a homogeneous
material with macroscopic or effective properties [1,5e8]. It has
been shown that given the individual phases, the effective prop-
erties of the materials are uniquely determined by microstructure
of the phases [1]. Consequently, the discovery of novel guiding
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principles to arrange the constituents presents a promising path to
design and realize materials with a broad spectrum of exotic and
desirable properties by combining the best features of the con-
stituents. The concept of disordered hyperuniformity provides
guiding design principles for the creation of materials with singular
performance characteristics, as we will demonstrate in this work.

The notion of hyperuniformity was first introduced in the
context of many-particle systems over a decade ago [9]. Hyper-
uniform many-body systems are those characterized by an anom-
alous suppression of density fluctuations at long wavelengths
relative to those in typical disordered systems such as ideal gases,
liquids and structural glasses. All perfect crystals and perfect qua-
sicrystals, and certain special disordered systems are hyperuniform
[9,10]. Disordered hyperuniform many-particle systems are exotic
amorphous state of matter that lie between crystal and liquid
states: they behave like crystals in the way that they suppress
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density fluctuations at very large length scales, and yet they are
statistically isotropic with no Bragg peaks. There is a special type of
hyperuniformity called disordered stealthy hyperuniformity, char-
acterized by the absence of scattering within a range of small
wavenumbers around the origin in the Fourier space [11,12].

The exotic structural features of disordered hyperuniform sys-
tems appear to endow such systems with novel physical properties.
For example, disordered hyperuniform dielectric networks were
found to possess complete photonic band gaps comparable in size
to photonic crystals [13,14]. Interestingly, such networks are
isotropic, i.e., electromagnetic radiation propagates through the
networks independent of the direction, which is an advantage over
photonic crystals, and thus makes them suitable for applications
such as lasers, sensors, waveguides, and optical microcircuits [14].
Moreover, disordered hyperuniform patterns can have optimal
color-sensing capabilities, as evidenced by avian photoreceptors
[15]. Recently it was revealed that the electronic band gap of
amorphous silicon widens as it tends toward a hyperuniform state
[16]. In the context of superconductors, it was shown that hyper-
uniform pinning site geometries exhibit enhanced pinning [17],
which is robust over a wide range of parameters. In addition, there
is evidence suggesting that disordered hyperuniform particulate
media possess nearly optimal transport properties while main-
taining isotropy [18].

These tantalizing findings have provided an impetus for re-
searchers to discover and/or synthesize new disordered hyper-
uniform systems. We now know that disordered hyperuniformity
arises in both equilibrium and nonequilibrium systems across space
dimensions; e.g., maximally random jammed hard-particle pack-
ings [19e22], driven nonequilibrium granular and colloidal systems
[23,24], dynamical processes in ultracold atoms [25], geometry of
neuronal tracts [26], immune system receptors [27] and polymer-
grafted nanoparticle systems [28]. The reader is referred to
Refs. [29] and [30] for a comprehensive review of disordered
hyperuniform systems that have been discovered so far.

Recently the concept of disordered hyperuniformity has been
generalized to two-phase heterogeneous materials [10,29,30].
Thesematerials possess suppressed volume-fraction fluctuations at
large length scales, and yet are isotropic with no Bragg peaks. This
can sometimes offer advantages over periodic structures with high
crystallographic symmetries in which the physical properties can
have undesirable directional dependence [13,14]. Specifically, the
spectral density ~cV ðkÞ of such system goes to zero as the wave-
number k goes to zero with a power-law scaling [10,19e21,31], i.e.,

~cV ðkÞ �
��kja; (1)

where a is the scaling exponent. Equivalently, the local volume-
fraction variance s2V ðRÞ associated with a d-dimensional spherical
observation window of radius R possesses the following scaling at
large R [10,19e21,31]:

s2V ðRÞ �
8<:R�ðdþ1Þ; a>1;

R�ðdþ1Þ ln R; a ¼ 1;
R�ðdþaÞ; 0<a<1:

ðR/∞Þ (2)

where d is the dimension. Note that in all three cases s2V ðRÞ decays
more rapidly than the inverse of the window volume, i.e., faster
than R�d, which is different from typical disordered two-phase
materials.

Our ability to design disordered hyperuniform two-phase ma-
terials in a systematic fashion is currently lacking and hence their
potential for applications has yet to be explored. In this work, we
develop for the first time a Fourier-space based numerical
construction procedure to design at will a wide range of disordered
hyperuniform two-phase materials by tuning the shape of the
spectral density function across phase volume fractions. This is
equivalent to tuning the degree and length scales at which there is
anomalous suppression of volume-fraction fluctuations in these
materials. We note that the Fourier-space setting is the most nat-
ural one, since hyperuniformity is defined in Fourier space. This
setting is crucial for capturing accurately the long-wavelength, or
equivalently, small-wavenumber k behavior. Our designed disor-
dered hyperuniform microstructures include ones with phase-
inversion symmetry as well as a stealthy dispersion. We compute
the two-point cluster function, which incorporates nontrivial to-
pological connectedness information and is known to provide a
discriminating signature of different microstructures [32].

Subsequently, we investigate the effective transport properties
and wave-propagation characteristics of these materials. We
demonstrate that the anomalous suppression of volume-fraction
fluctuations in hyperuniform two-phase materials endow them
with novel and often optimal transport and electromagnetic
properties. In the case of phase-inversion-symmetric materials, we
show that they indeed achieve a well-known explicit formula for
the effective electrical (thermal) conductivity. On the other hand,
the stealthy dispersion possesses nearly optimal effective conduc-
tivity while being statistically isotropic. It is noteworthy that the
frequency-dependent effective dielectric constant of any two-
phase hyperuniform material cannot have imaginary part,
implying that any such material is dissipationless (i.e., transparent)
to electromagnetic radiation in the long-wavelength limit. Hence,
all of our designed hyperuniform materials possess such charac-
teristics. Moreover, our constructed dispersion is transparent for a
range of wavelengths as well.

It is noteworthy that our tailored composite microstructures can
be readily realized by 3D printing and lithographic technologies.
We expect that our designs will be potentially useful for energy-
saving materials [33], batteries [34] and aerospace applications
[35].

In Sec. 2, we describe the Fourier-space based construction
technique to design disordered hyperuniform two-phase materials.
In Sec. 3, we employ our construction technique to generate
disordered hyperunform two-phase microstructures with pre-
scribed spectral densities. In Sec. 4 we compute the corresponding
effective transport properties and wave-propagation characteris-
tics of the designed two-phase materials. In Sec. 5, we offer
concluding marks, and discuss potential application and extension
of our results.
2. Fourier-space construction procedure

2.1. Algorithm description

The microstructure of a random multi-phase material is
uniquely determined by the indicator functions I ðiÞðxÞ associated
with all of the individual phases defined as

I ðiÞðxÞ ¼
�
1; x in phase i
0; otherwise

(3)

where i ¼ 1;…; q and q is the total number of phases [1]. For sta-
tistically homogeneous two-phase materials where there are no

preferred centers, the two-point probability function SðiÞ2 ðrÞ mea-
sures the probability of finding two points separated by vector
displacement r in phase i [1]. The autocovariance function cV ðrÞ is
trivially related to SðiÞ2 ðrÞ via



D. Chen, S. Torquato / Acta Materialia 142 (2018) 152e161154
cV ðrÞ≡SðiÞ2 ðrÞ � f2
i ; (4)

where fi is the volume fraction of phase i [1]. The spectral density
~cV ðkÞ is the Fourier transform of the autocovariance function cV ðrÞ,
where k is the wavevector [10,19e21,31]. In practice we generally
deal with finite-sized digitized materials, i.e., materials consisting
of pixels (square units) in two dimensions or voxels (cubic units) in
three dimensions with each pixel (or voxel) entirely occupied by
one phase. We apply periodic boundary conditions to materials as
approximation of the infinite system that we are interested in.

The Yeong-Torquato stochastic reconstruction procedure [36,37]
is a popular algorithm to (re)construct digitized multi-phase media
from correlation functions in physical (or direct) space. Liu and
Shapiro have further employed advanced structure synthesis
techniques that utilize a variety of microstructure descriptors in
physical space to design functionally graded materials [38]. We
note that there is a variety of other methods that have been
developed to generate or reconstruct microstructures from limited
structural information in the direct space; see Refs. [39e47] and
references therein.

In this paper, we generalize the Yeong-Torquato procedure to
construct disordered hyperuniform materials with desirable
effective macroscopic properties but from structural information in
Fourier (reciprocal) space, i.e., the spectral density ~cV ðkÞ. Specif-
ically, we define a fictitious “energy” E of the system as the squared
differences between the target and (re)constructed spectral den-
sities, i.e.,

E ¼
X
k

h
~cV ðkÞ

.
ld � ~cV ;0ðkÞ

.
ld
i2
; (5)

where the sum is over discrete wave vectors k, ~cV ;0ðkÞ and ~cV ðkÞ
are the spectral densities of the target and (re)constructed micro-
structures, d is the dimension, and l is certain characteristic length
of the system used to scale the spectral densities such that they are
dimensionless. We employ simulated annealing method [36] to
minimize the energy of the system. We start with random initial
configurations with prescribed volume fractions of both phases. At
each time step we randomly select one pixel (or voxel) from each of
the two phases and attempt to swap them [45,46]. In the later
stages of the construction procedure, we apply the different-phase-
neighbor-based pixel swap rule, an advanced rule developed pre-
viously [47] to improve efficiency of the algorithm and remove
random “noise” (isolated pixel or small clusters of pixels of the
phase of interest) in the media. We update the spectral density of
the trial configuration ~cV ðkÞ and compute the system energy. We
accept the trial pixel swap according to the probability

paccðold/newÞ ¼ min
�
1; exp

�
� Enew � Eold

T

��
; (6)

where T is the fictitious ”temperature” of the system that is set
initially high and gradually decreases according to a cooling
schedule [36,37], and Eold and Enew are the energies of the system
before and after the pixel swap. Trial pixel swaps are repeated and
system energy is tracked until it drops below a specified stringent
threshold value, which we choose as 10�3 in this work.
2.2. Efficient algorithmic implementation of the construction
technique

In this work, we consider digitized two-phase materials in a
square domain in two dimensions subject to periodic boundary
conditions and denote the side length of the square domain by L.
Here we set L to be 300 pixels. For suchmaterials, thewave vector k
can only take discrete values k ¼ 2p� ðn1bx þ n2byÞ=Lðn1;n22ZÞ,
where bx, by are two orthogonal unit vectors aligned with the
boundaries of the square domain. It can be easily shown that the
spectral density of such materials can be computed as

~cV ðkÞ ¼
1
A
~m2ðkÞ

��� ~J ðkÞ
���2; (7)

where A ¼ L2 is the area of the system, ~mðkÞ is the Fourier trans-
form of the indicator function mðrÞ of a pixel and given by

~mðkÞ ¼

8>>>>>>>>>>>><>>>>>>>>>>>>:

sinðkx=2Þ
ðkx=2Þ

sin
�
ky
�
2
	�

ky
�
2
	 ; kxs0; kys0

sinðkx=2Þ
ðkx=2Þ ; kxs0; ky ¼ 0

sin
�
ky
�
2
	�

ky
�
2
	 ; kx ¼ 0; kys0

1; kx ¼ 0; ky ¼ 0

; (8)

and the generalized collective coordinate [48] ~J ðkÞ is defined as

~J ðkÞ ¼
X
r
½expðik$rÞðI ðrÞ � fÞ�; (9)

where r sums over all the pixel centers, and I ðrÞ [as defined in Eq.
(3)] and f are the indicator function and volume fraction of the
phase of interest, respectively. Henceforth, when referring to the
properties of the phase of interest, we will drop the subscripts and
superscripts for simplicity. In this work we focus on isotropic ma-
terials and employ the angular-averaged version ~cV ðkÞ of ~cV ðkÞ in
the energy functional E as defined in Eq. (5).

A central issue in the construction procedure is to compute the
spectral density of the trial configurations efficiently. Here instead
of computing ~cV ðkÞ from scratch for every new configuration, we
have devised a method that enables one to quickly compute ~cV ðkÞ
of the new configuration based on the old ones. Specifically we
track the generalized collective coordinate ~J ðkÞ at each k. At the
beginning of the simulation, ~J ðkÞ of the initial configuration is
explicitly computed. Then for every new trial configuration, the
change of ~J ðkÞ only comes from the pixel swap and thus can be
updated as follows:

~J ðkÞ þ d ~J
newðkÞ � d ~J

oldðkÞ/ ~J ðkÞ; (10)

where

d ~J
newðkÞ ¼ expðik$rnewÞ; (11)

d ~J
oldðkÞ ¼ expðik$roldÞ; (12)

and rnew and rold are the new and old positions of the moved pixel
that belongs to the phase of interest. Then ~cV ðkÞ of the trial
configuration is computed using Eq. (7) and subsequently binned
according to k ¼ jkj in order to obtain the angular-averaged ~cV ðkÞ. If
the trial swap is rejected, ~J ðkÞ of the old configuration can be easily
restored by

~J ðkÞ � d ~J
newðkÞ þ d ~J

oldðkÞ/ ~J ðkÞ: (13)

Note that the complexity of our algorithm is OðL2Þ, where L is the
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linear size of the microstructure. The simulations were performed
on an Intel(R) Xeon(R) CPU (E5-2665) with a clock speed of
2.40 GHz, and it took roughly one day to generate a typical
microstructure.
3. Designing disordered hyperuniform two-phase materials
with prescribed spectral densities

Previously certain necessary conditions that autocovariance
functions cV ðrÞ have to satisfy so that they can be realized by two-
phase materials have been determined [49,50]. It is noteworthy
that these necessary conditions are not sufficient to guarantee
realizablity of cV ðrÞ by two-phase materials, which should be ul-
timately verified by the successful construction of the targeted
spectral densities. Also, certain parameterized autocovariance
functions expressible in terms of a set of chosen realizable basis
functions have been identified [49,50]. Here we utilize this
knowledge, but for a completely different purpose, i.e., to design
various disordered hyperuniform two-phase materials. Specifically,
we first design realizable cV ðrÞ with an additional hyperuniform
constraint [29,30]:Z
ℝd

cV ðrÞdr ¼ 0; ~cV ð0Þ ¼ 0: (14)

We then compute the Fourier transform ~cV ðkÞ of cV ðrÞ and
employ ~cV ðkÞ as the target spectral density in the aforementioned
Fourier-space construction technique. Subsequently, we carry out
this construction technique to construct two-phase materials cor-
responding to ~cV ðkÞ. The procedure is schematically shown in Fig. 1.

As a proof-of-concept and for simplicity, we first design a family
of disordered hyperuniform materials with phase-inversion sym-
metry [1], i.e., the corresponding microstructures at volume frac-
tions f can be generated by inverting the two phases of the
microstructures at volume fractions 1� f. Another reason to
design these microstructures is that they achieve a well-known
explicit formula for effective conductivity, as we show in detail in
next section. The scaled autocovariance function cV ðrÞ=½fð1� fÞ� of
such microstructures is independent of f [50]. Here we explicitly
consider constructions at volume fractions f � 0:5, and generate
microstructures at f>0:5 by inverting the two phases of the mi-
crostructures at 1� f.

We start with realizable basis functions for cV ðrÞ that were
identified previously [50]. One such example is

cV ðrÞ=½fð1� fÞ� ¼ e�r=acosðqrÞ; (15)

where q is the wavenumber associated with the oscillation of cV ðrÞ,
and a can be considered as the correlation length of the system. In
previous work [30] it was found that when qa ¼ 1:0, the corre-
sponding autocovariance function satisfies all the known necessary
realizable conditions and the hyperuniformity constraint. Here we
Fig. 1. Illustration of the numerical construction procedure to design and generate
disordered hyperuniform two-phase materials. The hyperuniformity condition places
constraint on cV ðrÞ and ~cV ðkÞ, as given Eq. (14).
set as q ¼ 0:1 to ensure high enough resolution for the micro-
structure. Then we set a ¼ 10:0 such that qa ¼ 1:0 is satisfied. The
resulting cV ðrÞ is shown in Fig. 2(c).

We compute the corresponding spectral density ~cV ðkÞ and
employ it to construct two-phase materials. We construct micro-
structures at volume fractions f ¼ 0.1, 0.2, 0.3, 0.4, 0.45, and 0.5. The
constructed microstructures are shown in the third column of
Fig. 3. Representative target and constructed spectral densities at
f ¼ 0:5 are shown in Fig. 5(c). It is noteworthy that spectral den-
sities at other values of f only differ by certain constants. Note that
~cV ðkÞ goes to zero quadratically as k goes to zero, i.e., the scaling
exponent a ¼ 2. In addition, in the opposite asymptotic large-k
limit, ~cV ðkÞ decays like 1=k3, which is consistent with the fact that
cV ðrÞ is linear in r for small r.

Another basis function investigated previously [50] is

cV ðrÞ=½fð1� fÞ� ¼ 1
2

h
e�r=a þ e�r=bcosðqrÞ

i
; (16)

where q, a, and b are parameters (here we choose a as a charac-
teristic length of the system). In previous work [30] we find that

when a ¼ ½ððqbÞ2 � 1Þ1=2�=½ðqbÞ2 þ 1� and 1< qb � ð
ffiffiffi
2

p
þ

ffiffiffi
6

p
Þ=2,
Fig. 2. Realizable autocovariance functions cV ðrÞ=½fð1� fÞ� that correspond to
hyperuniform two-phase materials, where f is the volume fraction of the phase of
interest. Functions in (a), (b), (d), (f) are given by Eq. (17) with the parameters (q, a, b,
c) ¼ (5/2, 5, 5

ffiffiffiffiffiffi
15

p
=2, 1/4), (3, 4, 4

ffiffiffi
6

p
, 1/2), (5, 4, 24, 1/2), and (8, 15, 15

ffiffiffiffiffiffi
14

p
, 1/2),

respectively. Function in (c) is given by Eq. (15) with q ¼ 0:1 and a ¼ 10:0. Function in
(e) is given by Eq. (16) with q ¼ 0:2, a ¼ ½5ð1þ

ffiffiffi
3

p
Þ3=2�=½

ffiffiffi
2

p
ð3þ

ffiffiffi
3

p
Þ�, and

b ¼ 5ð
ffiffiffi
2

p
þ

ffiffiffi
6

p
Þ=2.



Fig. 3. Realizations of disordered hyperuniform two-phase materials. From left to right, each column corresponds to one autocovariance function in Fig. 2. The quantity f is the
volume fraction of the phase of interest, and a specifies the asymtotpic behavior of ~cV ðkÞ as k goes to zero, i.e., ~cV ðkÞ � ka . Note that since these microstructures possess phase-
inversion symmetry, the corresponding microstructures at volume fractions f>0:5 can be generated by inverting the two phases of the microstructures at volume fractions 1� f.
Note that depending on the exponent a, the volume-fraction variance scaling will behave according to Eq. (2).
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the autocovariance function (16) satisfies all the known necessary
realizable conditions and the hyperuniformity constraint. Here,
similar to the previous case, we choose q ¼ 0:2. To obtain quartic
behavior of ~cV ðkÞ near the origin, we set b ¼ 5ð

ffiffiffi
2

p
þ

ffiffiffi
6

p
Þ=2 such

that qb ¼ ð
ffiffiffi
2

p
þ

ffiffiffi
6

p
Þ=2 is satisfied, and then set

a ¼ ½5ð1þ
ffiffiffi
3

p
Þ3=2�=½

ffiffiffi
2

p
ð3þ

ffiffiffi
3

p
Þ� to satisfy a ¼ ½ððqbÞ2�

1Þ1=2�=½ðqbÞ2 þ 1�. The resulting cV ðrÞ is shown in Fig. 2(e). The
constructed microstructures are shown in the fifth column of Fig. 3.
Representative target and constructed spectral densities at f ¼ 0:5
are shown in Fig. 5(e). It is noteworthy that spectral densities at
other values of f only differ by certain constants. The constructed
spectral density indeed demonstrates hyperuniformity; moreover,
~cV ðkÞ is indeed quartic in k around the origin. In addition, in the
opposite asymptotic large-k limit, ~cV ðkÞ decays like 1=k3, which is
consistent with the asymptotic behavior of cV ðrÞ for small r.

In order to obtainmaterials with other types of hyperuniformity,
i.e., other power laws of ~cV ðkÞ around the origin, we introduce a
new class of autocovariance function

cV ðrÞ=½fð1� fÞ� ¼ ðcþ 1Þe�r=a � c
bq

ðr þ bÞq ; (17)

where the parameters q, a, b and c are positive. For this cV ðrÞ to be
realizable and hyperuniform, the parameters have to satisfy the
following conditions:
ðv� 2Þðv� 1Þð1þ cÞa2 ¼ cb2; (18)

�1þ c
a

þ cv
b
<0; (19)

and

1þ c
a2

� cvð1þ vÞ
b2

� 0: (20)

The relation (18) corresponds to the hyperuniformity constraint,
Eq. (19) corresponds to the realizability condition that the first
derivative of cV ðrÞ should be negative at r ¼ 0 [50], and Eq. (20)
corresponds to the realizability condition that the second deriva-
tive of cV ðrÞ should be nonnegative at r ¼ 0 [50]. It is noteworthy
that this cV ðrÞ scales like �1=rq for large r, which translates into a
scaling of kq�d for ~cV ðkÞ at small k, where d ¼ 2 is the dimension.
Thus by tuning the value of q, we can manipulate the type of
hyperuniformity that results. Specifically, we aim to obtaining
materials with their ~cV ðkÞ going to zero as k goes to zero with the
following exponents a: 1=2, 1, 3, and, 6, respectively. We find that
by setting the parameters (q, a, b, c) ¼ (5/2, 5, 5

ffiffiffiffiffiffi
15

p
=2, 1/4), (3, 4,

4
ffiffiffi
6

p
, 1/2), (5, 4, 24, 1/2), and (8, 15, 15

ffiffiffiffiffiffi
14

p
, 1/2), respectively, these

desired small-k asymptotic behaviors of ~cV ðkÞ, i.e., a ¼ 1=2, 1, 3,
and, 6, are achieved. The resulting cV ðrÞ are shown in Fig. 2(a), (b),
(d), and (f), and the constructedmicrostructures in the first, second,



Fig. 5. Representative target and constructed dimensionless spectral densities
~cV ðkÞ=a2 that correspond to realizations of hyperuniform microstructures at f ¼ 0:5 in
Fig. 3, where a is certain characteristic length scale of the systems. It is noteworthy that
spectral densities at other values of f only differ by certain constants.
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fourth, and sixth columns of Fig. 3, respectively. Representative
target and constructed spectral densities of these microstructures
at f ¼ 0:5 are shown in Fig. 5(a), (b), (d), and (f), respectively. It is
noteworthy that spectral densities at other values of f only differ by
certain constants. In addition, we note that the microstructures in
the first and second columns of Fig. 3 possess the third and second
types of volume-fraction variance scaling described in Eq. (2),
respectively, and all of the rest microstructures in Fig. 3 possess the
first type of scaling described in Eq. (2).

The designed materials shown in Fig. 3 possess a variety of
morphologies: as f increases, the materials gradually transition
from particulate media consisting of isolated “particles” to
labyrinth-like microstructures. Note that both phases in the mi-
crostructures with a ¼ 2:0 and a ¼ 4:0 at f ¼ 0:5 in Fig. 3 percolate
with nearest-neighbor and next-nearest-neighbor connections
(along the pixel edges and corners), which is a singular topological
feature for a two-dimensional composite [1]. Normally, only one
phase can percolate (with the other phase being topologically
disconnected). It is known that d-dimensional (d � 2) two-phase
materials that possess phase-inversion symmetry are bicontin-
uous (i.e., both phases percolate) for fc <f<1� fc, provided that
the percolation threshold fc <1=2 [1]. For example, two-
dimensional random checkerboard systems are bicontinuous for
0:4073<f<0:5927 with nearest-neighbor and next-nearest-
neighbor connections [1]. Also, to quantify the differences in
long-range topological connectedness of the microstructures with
a ¼ 2:0 and a ¼ 4:0 at f ¼ 0:5 in Fig. 3, we have computed their
corresponding two-point cluster functions C2ðrÞ, which measure
the probability of finding two points separated by r in the same
cluster of the phase of interest [1,32], as shown in Fig. 4(a) and (b). A
cluster is defined as any topologically connected region of a phase.
Clearly the microstructures with a ¼ 2:0 is less connected than the
one with a ¼ 4:0 on large length scales, which is consistent with
the observation that the exponentially decaying term in Eq. (16)
gives rise to clusters of random sizes and shapes [45,46].

We now consider a construction of hyperuniformmaterials that
does not have phase-inversion symmetry. We employ random disk
packings as initial conditions and start from very low initial tem-
perature T0 ¼ 10�10. We employ a pixel selection rule that favors
the swap of pixels of different phases at the two-phase interphase
(see Appendix A for detail), and only constrain ~cV ðkÞ to be zero for
wavenumbers within a circular exclusion region around the origin
with a radius K. We obtain disordered stealthy hyperuniform
dispersion at relatively high volume fraction f ¼ 0:388, which
appear like the patterns of leopard spots, as shown in Fig. 6. Here K
is chosen such that K=ð2pr1=2Þ � 0:864, where r is the number
density of the “particles” (We note that for a microstructure with a
Fig. 4. (a) Two-point cluster function C2ðrÞ of the microstructure with a ¼ 2:0 at
f ¼ 0:5 in Fig. 3. (b) Two-point cluster function C2ðrÞ of the microstructure with
a ¼ 4:0 at f ¼ 0:5 in Fig. 3. Note that C2ðrÞ in (a) decays more slowly than C2ðrÞ in (b),
implying better long-range connectedness of the microstructure with a ¼ 2:0 in Fig. 3.
linear size of 300 pixels, the distance between neighboring k points
in the Fourier space is 2p=300, and if we choose a bin size roughly
twice as large as this distance for k to compute ~cV ðkÞ, the exclusion
regionwith a radius 0.864 includes k points within the first 5 bins).
This example serves to demonstrate that by varying the initial
conditions and cooling schedule, there is a wide diversity of mi-
crostructures that can be generated by our construction technique.
Note that this dispersion is transparent to electromagnetic radia-
tion with wavenumbers smaller than K in the single-scattering
regime. Such materials should also be transparent for a range of
wavelengths in the multiple-scattering regime when the incident
wavenumber of the radiation is less than about K=4 [51].

4. Transport and wave-propagation properties of the
designed materials

4.1. Effective conductivity of the designed materials

In this section, we first compute the effective electric (or ther-
mal) conductivity se of the aforementioned designed materials.
According to the homogenization theory [1], the effective con-
ductivity se is defined through the averaged Ohm's (or Fourier's)
law:



Fig. 6. Designed disordered stealthy hyperuniform dispersion that is transparent to
long-wavelength electromagnetic radiation and its associated dimensionless spectral
density r~cV ðkÞ (scaled by the number density of the “particles” r). To generate such a
pattern, we employ random disk packings as initial conditions and a pixel selection
rule that favors the swap of pixels of different phases at the two-phase interphase. We
start from very low initial temperature T0 ¼ 10�10, and only constrain ~cV ðkÞ to be zero
for wavenumbers within the exclusion region, which is shown in the spectral density
plot (the region on the left of the blue dash line). Interestingly, this dispersion pos-
sesses nearly optimal effective electrical (or thermal) conductivity for a realization
with the individual phase conductivity contrast s2=s1 ¼ 10:0, where s1 and s2 are the
electrical (or thermal) conductivities of the “particle” and matrix phases, respectively.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. The effective conductivities of the designed microstructures across different
values of a and f in Fig. 3, as computed from the first-passage-simulation techniques.
Here we consider the case where the contrast of phase conductivities s2=s1 is 10.0, and
f is the volume fraction of phase 2, which is targeted in the construction technique.
The HS two-point bounds on se as well as the SC approximation as described by Eq.
(24) are also plotted alongside the simulation results. The effective conductivities se of
these microstructures indeed agree well with the SC approximation.
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hJðxÞi ¼ sehEðxÞi; (21)

where angular brackets denote an ensemble average, 〈JðxÞ〉 is the
average flux and 〈EðxÞ〉 is the average field.

We consider the case where the phase conductivity contrast of
the two individual phases s2=s1 is 10.0. To compute the effective
conductivities se of the constructed digitized materials, we employ
the first-passage-time simulation techniques [18,52,53]. Specif-
ically we release over 105 randomwalkers to sample each material
and record the mean squared displacement hR2ðtÞi of the random
walkers at sufficiently large t. Then se is computed as

se ¼ lim
t/∞

�
R2ðtÞ�=ð2dtÞ; (22)

where d is the dimension.
Torquato [1] has derived a “strong-contrast” expansion of se that

perturbs around the microstructures that realize the well-known
self-consistent (SC) approximation for effective conductivity:

f2
se þ ðd� 1Þs1

se � s1
þ f1

se þ ðd� 1Þs2
se � s2

¼ 2� d�
X∞
n¼3

"
Að2Þ
n

f2
bn�2
21 þ Að1Þ

n

f1
bn�2
12

#
;

(23)

where AðpÞ
n is the n-point parameter, and

b12 ¼ �b21 ¼ ðs1 � s2Þ=ðs1 þ s2Þ. If we truncate Eq. (23) after

third-order terms and set Að2Þ
3 ¼ f1f

2
2, Eq. (23) reduces to the SC

approximation, which in two dimensions is given by

f2
se þ s1
se � s1

þ f1
se þ s2
se � s2

¼ 0: (24)

The reader is referred to Ref. [1] for more details about this SC
approximation. Milton showed that multiscale hierarchical self-
similar microstructures realize the SC approximation [54].
Torquato and Hyun further found a class of periodic, single-scale
dispersions that realize this approximation [55]. Here we discover
that a family of disordered single-scale microstructures can also
realize this approximation, as shown in Fig. 3. The effective con-
ductivity results for these microstructures across phase volume
fractions f are shown in Fig. 7. The Hashin-Shtrikman (HS) two-
point bounds on se as well as the SC approximation as described
by Eq. (24) [1] are also plotted alongside the simulation results. The
effective conductivities se of these microstructures indeed agree
well with the SC approximation. This agreement demonstrates our
ability to construct microstructures with targeted transport
properties.

Now we determine the dimensionless effective conductivity
se=s1 of the disordered stealthy hyperuniform dispersion described
in Fig. 6. Again, using first-passage time techniques [18,52,53], we
find that se=s1 ¼ 4:92. The corresponding HS upper and lower
bounds on the dimensionless effective conductivity for any two-
phase material with such a phase volume fraction and phase con-
ductivities are determined to be 5.18 and 3.01, respectively. Thus,
we see that the effective conductivity se of the stealthy dispersion is
close to the upper bound, which means that this disordered steal-
thy dispersion possesses a nearly optimal effective conductivity.
4.2. Frequency-dependent effective dielectric constant of the
designed materials

Here we consider the determination of the frequency-
dependent effective dielectric constant εeðk1Þ of the constructed
microstructures, which we treat as two-phase dielectric random
media with real phase dielectric constants ε1 and ε2. Here k1 is the
wavenumber of the wave propagation through phase 1. In this case,
the attenuation of the waves propagating through the effective
medium is due purely to scattering, not absorption [56].We assume
that the wavelength of the propagation wave is much larger than
the scale of inhomogeneities in the medium. We are interested in
the effective dielectric constant εeðk1Þ associated with the homog-
enized dynamic dielectric problem [1,56]. Rechtsman and Torquato
[56] have derived a two-point approximation based on the strong-
contrast expansion to estimate εe for two- and three-dimensional
microstructures with a percolating phase 2 and ε2 � ε1:
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ε1 � ε2

ε1 þ ε2
f2
1



εe � ε2

εe þ ε2

��1

¼ f1 � Að1Þ
2 �



ε1 � ε2

ε1 þ ε2

�
; (25)

where Að1Þ
2 is the two-point parameter that is an integral over the

autocovariance function weighted with gradients of the relevant
Green's functions. The latter was explicitly represented in three
dimensions, but not in two dimensions. It can be shown (see

Appendix B for details) that Að1Þ
2 in two dimensions is given by

Að1Þ
2 ¼

24� gk21

Z∞
0

cV ðrÞrdr � k21 ln k1

Z∞
0

cV ðrÞrdr

�k21

Z∞
0

cV ðrÞr lnðr=2Þdr
35þ i

p

2
k21

Z∞
0

cV ðrÞrdr þ O
�
k41 ln k1

�
;

(26)

where gz0:577216 is the Euler's constant.
The imaginary part of εeðk1Þ accounts for attenuation (losses)

due to incoherent multiple scattering in a typical disordered two-
phase material [56]. Because of the sum rule Eq. (14) on any cV ðrÞ
that corresponds to disordered hyperuniform two-phase materials,

it immediately follows that the imaginary part of Að1Þ
2 in Eq. (26),

and hence εeðk1Þ in Eq. (25) vanish in the long-wavelength limit for
any such materials. As a result, any hyperuniform material is
transparent to electromagnetic radiation, i.e., dissipationless in the
long-wavelength limit according to the approximation (26). This is
because the attenuation of propagating waves in such composite
materials with real phase dielectric constants can only come from
scattering, as mentioned above. Also, the first two terms of the real

part of Að1Þ
2 in Eq. (26) vanish for such materials, while the

remaining lowest-order term �k21
R∞
0 cV ðrÞr lnðr=2Þdr generally

does not vanish and depend on the exact form of cV ðrÞ. We
compute the real part of εe for two hyperuniform materials: a
phase-inversion-symmetric case of a realization of Eq. (15) and a
non-phase-inversion-symmetric one in Fig. 6 at f2 ¼ 0:612, where
phase 2 is the percolating matrix phase. We take k1 ¼ 2p=ð10aÞ,
Fig. 8. Real part of the effective dielectric constant Re ½εe � of two hyperuniform ma-
terials: a phase-inversion-symmetric case of a realization of Eq. (15) and a non-phase-
inversion-symmetric one in Fig. 6 as a function of dielectric-contrast ratio ε2=ε1 at
volume fraction f2 ¼ 0:612 and wave number k1 ¼ 2p=ð10aÞ. In order to calculate Að1Þ

2
for each microstructure, Eq. (26) is used. Clearly Re½εe� differ for these two systems
across different values of ε2=ε1.
where a ¼ 10:0 is the characteristic length in Eq. (15). We first

compute Að1Þ
2 from Eq. (26), and then compute εe from Eq. (25)

using Að1Þ
2 . The results are shown in Fig. 8. Clearly the real part of

εe differ for these two systems across values of ε2=ε1. At last, we
note that the frequency-dependent dielectric constant problem is
demonstrated to be equivalent to the static effective conductivity
problems as the wavenumber of the propagation wave goes to zero
[1].

5. Conclusions and discussion

In this work, we developed for the first time a Fourier-space
numerical construction procedure to design at will a wide class of
disordered hyperuniform two-phase materials. These materials
possess anomalous suppression of volume-fraction fluctuations at
large length scales, which endow them with novel and often
optimal transport and electromagnetic properties as we demon-
strated. Our designed phase-inversion-symmetric materials
possess various morphologies and different levels of topological
connectedness, as revealed by the two-point cluster function.
Moreover, they indeed achieve a well-known explicit formula for
the effective electrical (thermal) conductivity. On the other hand,
our designed disordered stealthy hyperuniform dispersion pos-
sesses nearly optimal effective conductivity, while being fully
isotropic. Such materials can sometimes offer advantages over pe-
riodic structures with high crystallographic symmetries where the
physical properties can be anisotropic, such as has been shown in
the case of photonic materials [13,14]. All of our designed hyper-
uniform materials are dissipationless (i.e., transparent to electro-
magnetic radiation) in the long-wavelength limit, which is a
common characteristic of hyperuniform materials. Moreover, our
dispersion is also transparent to electromagnetic radiation for a
range of wavelengths.

In the present paper, we focused on the design of two-
dimensional hyperuniform two-phase materials with prescribed
spectral densities, but it is noteworthy that with slight modification
our Fourier-space numerical construction technique can be readily
applied in three dimensions to design disordered hyperuniform
microstructures, which are expected to be distinctly different from
their two-dimensional counterparts. For example, bicontinuous
microstructures are much more common in three dimensions [1].
Moreover, all of our in-silico designed microstructures can be
readily realized by 3D printing and lithographic technologies [57].
Also, in principle there is no constraint on the types of constituent
materials that can be used in these composite materials as long as
the constituents (phases) are arranged in a hyperuniform fashion.
In addition, we note that a two-phase material can be viewed as a
special case of random scalar fields, and our results can be further
generalized to design hyperuniform scalar fields, which has
received recent attention [29,58].

Since all of our hyperuniform material designs are dissipation-
less in the long-wavelength limit, they will be potentially useful for
energy-saving materials that prevent heat accumulation by allow-
ing the free transmission of infrared radiation [33]. In addition, by
employing a phase-change material as the particle phase and
graphite as the matrix phase in our designed disordered stealthy
hyperuniform dispersion, one could fabricate phase-change com-
posites with high thermal conductivity [59]. Such composite ma-
terials can absorb and distribute heat efficiently, which is crucial for
the normal operation of battery packs [34] and spacecrafts [35].

A natural extension of this work will be the statistical charac-
terization of our designed disordered hyperuniform two-phase
systems by computing a host of different types of statistical cor-
relation functions. This not only includes various types of two-point



D. Chen, S. Torquato / Acta Materialia 142 (2018) 152e161160
correlation functions, e.g., pore-size functions, lineal-path func-
tions, surface-surface correlation functions, to name a few, but their
higher-order (three-point) generalizations as well [1,60]. Moreover,
to gain further insight into the potential of these constructed mi-
crostructures, it will be beneficial to carry out a comprehensive
study to estimate other transport, thermal, mechanical, photonic
and phononic properties as well as effective reaction rates of these
composites.

Moreover, we note that identifying and utilizing process-
structure-property relationships to design and manufacture novel
materials with desirable properties is a holy grail of materials sci-
ence. The emergence of Integrated Computational Materials Engi-
neering (ICMG) has greatly accelerated this process by integrating
materials science and automated design [44]. Our present results
demonstrate that by designing hyperuniform microstructures with
tunable spectral densities, which are then automatically generated
at the mesoscale, we can control the effective physical properties of
the materials. By combining our construction technique with
existing material models and data infrastructures [61], one may be
able to create new powerful ICMG platforms to efficiently design
optimized materials for various applications.
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Appendix A. Pixel-selection rule for construction of
disordered stealthy hyperuniform dispersion

To construct disordered stealthy hyperuniform dispersion
shown in Fig. 6, we modify the different-phase-neighbor-based
(DPN-based) pixel selection rule proposed in Ref. [47]. In two di-
mensions, each pixel has 8 neighbors, and we divide the pixels of
each phase into different sets Si based on the number of neigh-
boring pixels i in a different phase that they have. For example, if we
consider a two-phase medium consisting of blue and red pixels, we
divide the blue pixels into different sets based on the number of
neighboring red pixels that they have.

In each pixel-swap iteration, for each phase in the medium, a set
Si is first selected according to pðSiÞ, which is given by

pðSiÞ ¼
�
0:6; i ¼ M;

wAðSiÞðiþ 1Þ4; 0 � i<M;
(A.1)

whereM is the maximum number of different-phase neighbors of a
pixel in the phase of interest, AðSiÞ is the number of pixels in the
phase of interest with i different-phase neighbors, and w is the
normalization factor given by

w ¼ ð1� 0:6Þ
," XM�1

i¼0

AðSiÞðiþ 1Þ4
#
: (A.2)

Then for each phase a pixel is randomly selected from the cor-
responding chosen Si, and the two selected pixels belonging to the
two different phases are swapped, generating a new trial
microstructure.

Appendix B. Derivation of the two-point parameter
associated with the frequency-dependent dielectric constant
in two dimensions

Here we apply the general formalism derived in Ref. [56] to two
dimensions. Specifically, the dyadic Green's function is given by

Gðr; r0Þ ¼ � I
2s1

dðr � r0Þ þ G1ðr; r0ÞI þ G2ðr; r0Þbrbr: (B.1)

where br is a unit vector directed from r0 towards r, I is the unit
tensor, dðr � r0Þ is the Dirac delta function, s1 ¼ k21 (k1 is the
wavenumber of the wave propagating through phase 1), and

G1ðr; r0Þ ¼
i
4

"
Hð1Þ
0 ðk1rÞ �

Hð1Þ
1 ðk1rÞ
k1r

#
; (B.2)

G2ðr; r0Þ ¼
i
4

"
Hð1Þ
1 ðk1rÞ
k1r

þ 1
2
Hð1Þ
2 ðk1rÞ �

1
2
Hð1Þ
0 ðk1rÞ

#
: (B.3)

Here Hð1Þ
i ðk1rÞ is the i-th order Hankel function of the first kind.

Note that the Green's function Gðr; r0Þ solves the following partial
differential equation:

V� V� Gðr; r0Þ � s1Gðr; r0Þ ¼ Idðr � r0Þ: (B.4)

The two-point parameter Að1Þ
2 associated with the frequency-

dependent dielectric constant εeðk1Þ is given by

Að1Þ
2 ¼ k21

Z
Tr½HðrÞ �cV ðrÞdr; (B.5)

where cV ðrÞ is the autocovariance function, Tr ½HðrÞ� is the trace of
HðrÞ, and HðrÞ is the principle value of the Green's function given
by

Hðr; r0Þ ¼ G1ðr; r0ÞI þ G2ðr; r0Þbrbr: (B.6)

Substituting Eqs. (B.2) and (B.3) into Eq. (B.6), we obtain the

explicit expression for Að1Þ
2 , which is Eq. (26).
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