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Computer simulation results are reported for the two-pomt matrix probablhty function Sz 
of two-phase random media composed of disks dlstrlbuted with an arbitrary degree of 
lmpenetrablhty I The novel techmque employed to sample SJr) (wiuch gives the probab&y 
of Iindmg the endpomts of a hne segment of length r In the matnx) IS very accurate and has a 
fast execution time Results for the hmltmg cases 1= 0 (fully penetrable disks) and 1= 1 (hard 
disks), respectively, compare very favorably with theoretIca predIctIons made by Torquato 
and Beasley and by Torquato and Lado Results are also reported for several values of I that 
he between these two extremes cases which heretofore have not been exammed ‘Em 1988 

Academtc Press. Inc 

I. INTRODUCTION 

A wide class of two-phase random media, such as suspensions, porous media, 
and composite materials, are composed of discrete particles which are randomly 
distributed throughout another phase, generically referred to as the matrix phase 
(fluid, solid, or void). A fundamental understanding of the bulk propertles (conduc- 
tivity, elastic moduli, fluid permeability, etc.) of such materials rests upon 
knowledge of distribution functions that statistically characterize the microstructure 
[ 11. In particular, such media can be characterized by the set of n-point matrix 
probability functions S,, which give the probability of finding n points all in the 
matrix phase. The lower order functions S,, S,, and S, arise in rigorous bounds on 
the conductivity [2, 33 and elastic moduli [4, 51 of composite media, rate constant 
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TWO-POINT PROBABILITY FUNCTION 177 

of diffusion-controlled reactions m porous media [6], and the fluid permeability of 
porous media [6-83. 

In a series of recent papers [9-131, Torquato and Stell developed a theoretical 
formalism which enables one to compute the S,, for media composed of particles 
such that the location of each mclusion is fully specified by a center-of-mass coor- 
dinate (e.g., spheres, disks, and oriented cubes, squares and ellipsoids). It is only 
very recently, however, that computer-simulation techniques have been employed 
to generate S,, Sz, and S3 [ 14163 for models of random media. 

This paper reports computer simulation results for S2 of two-dimensional (2D) 
media composed of (possibly overlapping) disks of equal radius R in a matrix. Our 
interest in 2D materials is twofold. First, certain 2D media (such as distributions of 
impenetrable disks) are useful models of fiber-reinforced materials. Second, smce 
the salient qualitative behavior of the function Sz is not strongly affected by a 
change in the dimensionality of the system [ 171, simulation results obtamed for 2D 
models (which are clearly less costly than 3D simulations) can be employed to infer 
the qualitative behavior of Sz for analogous 3D models. The simulation method 
presented here, moreover, can easily be extended to 3D media. 

In this study, we seek to mvestigate the effect of interparticle connectedness on Sz 
for isotropic distributions of disks in the penetrable-concentric-shell (PCS) model 
introduced by Torquato [18]. (The degree of the connectivity of the constitutive 
phases may dramatically influence the transport and mechanical properties of two- 
phase media, particularly when the phase properties differ significantly [ 191.) Inter- 
particle connectedness in the PCS model is related to the degree of penetrability 
1 - 1 of the disks (0 d 1 Q 1); 2 = 0 and A= 1 corresponding to the limitmg cases of 
“fully penetrable” and “totally impenetrable” disks, respectively. The novel techni- 
que presented here to sample for Sz IS not only accurate but has a fast execution 
time. 

This article is organized as follows. In Section II, we define Sz and describe our 
model system. In Section III, we present our method for calculating Sz from com- 
puter simulations. In Section IV, we report results for S, m the PCS model for 
2 = 0, 0.5, 0.7, 0.9, and 1 at various particle-phase volume fractions. The results for 
A= 0 and A= 1 are compared to known theoretical results. Finally, in Section V, we 
make concluding remarks. 

II TWO-POINT FUNCTION AND MODEL SYSTEM 

A. Two-Pomt Function S, 

For any two-phase random medium, we define the following characteristic 
function for one of the phases, say phase 1, 

if r is in phase 1, 
if r is in phase 2, 
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where r is a position vector within the macroscopic sample. The one- and two-point 
probability functions for phase 1 are then defined by [9] 

S,(h)= (I(r,)>, 

SZhr cd= <I(r,)4r,)), 

(2) 

(3) 

where angular brackets denote an ensemble average. For statistically homogeneous 
media, S, is simply equal to the volume fraction 4, of phase 1 and S,(r) depends 
only on the relative position r = rZ - r, . If, in addition, the medium is statistically 
isotropic, then S,(r) depends on the relative distance r = ]r]. In general, for 
statistically homogeneous media, S2 has the asymptotic properties 

S,(O) = s, = d,, (4) 

lim S*(r) = ~5:. (5) r-* 

Equation (4) follows from definitions (2) and (3). Conditron (5) assumes the system 
possesses no long-range order. 

The specific surface s (interfacial surface area per unit volume) for isotropic 3D 
media has been related to the slope of S,(r) at r = 0 by Debye, Anderson, and 
Brumberger [20]. By generalizing their arguments to 2D media, we find for 
isotropic 2D two-phase systems that 

d&(r) 
‘= -’ dr r=O’ 

(6) 

A variety of transport propertles depend upon s, including the rate constant 
associated with chemical reactions in porous media [7] and the fluid permeability 
of porous materials [7, 8, 211. 

B. Model System 

We consider computing S,(r) for isotropic distributions of eqmslzed disks at a 
number density p in the PCS model [18]. Hence if phase 1 denotes the matrix 
phase, then 4, is the matrix volume fraction, & is the particle-phase (or simply 
disk) volume fraction, and S,(r) gives the probability of finding the endpoints of a 
line segment of length r in the matrix. In the PCS model (depicted in Fig. l), disks 
(or parallel cylinders) of radius R are statistically distributed throughout a matrix 
subject only to the condition of a mutually impenetrable core of radius AR; A being 
the impenetrability parameter, 0 < 2 Q 1. Each disk of radius R, therefore, is com- 
posed of an impenetrable core of radius AR, encompassed by a perfectly penetrable 
concentric shell of thickness ( 1 - A) R. It is clear that the limiting cases 1= 0 and 
il = 1 correspond, respectively, to “fully penetrable” disks (in which disk centers are 
completely uncorrelated) and “totally impenetrable” disks. The PCS model for 
2 ‘V 1, serves as a useful model of fiber-reinforced materials with oriented, con- 
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FIG 1 A computer-generated reahzatton of a dlstrlbutton of disks of radius R = 012 (shaded region) 
m a matrix (unshaded regon) m the PCS model [IS] The disks have an Impenetrable core of diameter 
Iu mdlcated by the smaller. black circular regions Here I = 0 5 and the parttcle volume fractton $> = 0 3 

tinuous fibers and of thin films [22]. The 3D analog of the PCS model (involving 
spheres) for J < 1 IS a good model of consolidated media such as sandstones and 
sintered materials [ 191. 

For 3. > 0 (i.e., for finite-sized hard cores), the impenetrability condition alone 
does not uniquely determine the distribution. One may assume an equilibrium dis- 
trtbution [ 13, 171 or some nonequihbrium distributton, such as random sequential 
addttton (RSA) [23]. The equilibrium and RSA distrtbuttons are known to be 
dtfferent at the same number density p [23]. Computer simulation results reported 
m Section IV are for RSA. 

In RSA, contigurations are generated by randomly and sequentially placing par- 
ttcles in a unit cell. As each particle is added, it 1s determined whether the hard 
cores (of radius AR) overlap with any other hard core already m the unit cell. If the 
hard cores overlap, then that particular particle 1s removed and added again until it 
finds a vacancy. Ultimately, so many particles are added that a next particle finds 
no accessible space. This is the jammed state. The jamming hmit for RSA dis- 
trtbuttons of totally impenetrable disks (A= 1) occurs at dZ zz 0.55 [24, 251, which is 
well below the close-packing limtt of & 2 0.82 [26] for equihbrmm distributions. 

For the special case of fully penetrable disks (A = 0), the dtstrtbutton 1s uniquely 
determined by virtue of the total lack of spatial correlation between disk centers. In 
this limit, the n-point matrix probability functions have an especially simple 
analytical form. For example, for a dtstributton of fully penetrable dtsks at reduced 
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number density q = pA, (where A, = nR2 IS the area of one disk), the one- and two- 
point functions are given by [22] 

S, =dI =expC-rll, (7) 

S,(r)=expC-~A,(r)IA,I, (8) 

where 

A,(x) 2 71 -=2-- --sin-’ 
A, [ 7-c 2 

X-X(1 -x2)‘? H(1 -x) 1 (9) 

is the union area of two disks of diameter (r = 2R whose centers are separated by a 
distance r (X = r/a). Here H(x) is the Heaviside step function equal to unity for 
3~) 0 and zero otherwise. Use of (8) and (9) gives the specific surface for L =0: 

(10) 

Equations (8) and (10) will serve as useful checks on our simulation results. 
Before closing this section, it is important to note that the disk volume fraction 

d2 = 1 - 4, is equal to the reduced density q = pA, only for the specific case of 
totally impenetrable disks (A = 1). In general, at the same reduced density ‘I, 
+42(A)<d2(J= l)=q and s(n)<.s(A= 1)=2q/R, for 0~1~ 1. 

III. SIMULATION PROCEDURE 

A. Preliminary Discussion 

Obtaining S,(r) from computer simulations is a two-step process. First of all, one 
must generate realizations of the random medium. Subsequently, one samples each 
realization for the two-point function and then averages over a sufficiently large 
number of realizations to obtain S,(r). We are specifically interested in computing 
S,(r) for RSA distributions of disks in the PCS model at specified disk volume frac- 
tion d2 and impenetrability index 2. In general, the methods available for storing 
images of contigurations of particles are: (1) a bit-mapped (digitized) image, (2) an 
object-oriented approach (defined below), or (3) some hybrid of the preceeding two 
methods. In each case, m order to simulate an mlinite system, one surrounds the 
image with replicas of itself, i.e., periodic boundary conditions (PBC) are employed. 

When a bit-mapped approach is used, disks are “painted” onto a large square 
grid (pixel array) by setting all bits inside the disks (and hence m the particle 
phase) to 1. Initially, all bits are zeroed (100 % matrix phase) Note that only phase 
information IS retained i.e., the disks lose any individual identity. The error 
introduced when representing objects in this manner diminishes as we increase the 
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number of pixels We shall refer to this approach as the GRID method. This is the 
method that we employ in this study 

Berryman [14] used the GRID method (with a resolution of 512 x 512 pixels) to 
digitally process a single photograph of a synthetic composite material. He 
calculated lower-order spatial correlation functions using Fourier transform 
methods and array processing techniques; he then calculated effective property 
bounds. It IS important to note that Berryman obtained correlation functions using 
only a single realization of each material. Recently, Berryman and Blair [21] 
employed this technique to ascertain Sz for real porous-medium samples. 

When an object-oriented approach is used, the coordinates of the centers of each 
disk (plus any periodic images within a specified cutoff distance) are stored. If the 
disks are of unequal size, then the radius of each disk must be stored as well. Note 
that the particles do not lose their Individual identities. We shall refer to this 
approach as the “stored-configuration” (SC) method. Monte Carlo [27] and 
molecular dynamics [28] techmques used in the study of the liquid state are 
examples of the SC method. 

Configuration generation with the GRID method IS slower than with the SC 
method for circular disks. This is because many pixels must be manipulated with 
the GRID method. In our simulations, we use disks of radius R = 0.03. This means 
that there are (with 1024 x 1024 resolution) approximately 2965 bits within each 
disk and that each disk is ctrcumscribed by a square of side of length 0.06 that con- 
tains approximately 3775 bits. Figure 2 shows totally impenetrable disks (R = 0.03) 
with the coarser 512 x 512 resolution (771 bits per disk), at a disk volume fraction 

FIG 2 A computer-generated (512 x 512 pixels. 1750 pixels per disk) configuratlon of hard disks 
(A = 1, R =003) near the RSA Jammmg hmlt (q+> = 0 55) 
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very near the RSA jamming limit. The case of fully penetrable disks (A = 0) for 
& = 0.5 is shown in Fig. 3. In generating media consisting of particles of arbitrary 
shape, the time required using the GRID method will not be significantly larger 
than the time needed to generate media composed of equi-sized disks (see 
stmulation details below). This is not the case if the SC method is employed because 
the nonoverlap condition becomes considerably more difficult to test for particles of 
arbitrary shape. 

As pointed out by Feder [24], the GRID method can lead to poor results for 
certain quantities (such as the jamming limit and the radial distribution function at 
contact) if a small number of pixels are used to represent each disk As shown m the 
subsequent section, the resolution employed in this study is sharp enough to give a 
very good estimate of the jamming limit. 

For the GRID method, phase sampling IS accomplished by bit testing. This IS 
much faster than SC sampling, which requires floating-point calculations to deter- 
mme if a test point is inside any of perhaps hundreds of disks. To speed sampling 
with the SC method, Haile, Massobrio, and Torquato [lS] used a cell-list to 
reduce the number of distances to disk centers that must be calculated. (This is 
actually a hybridization of the SC method with the GRID method). They 
calculated Sz for hard spheres using molecular dynamics simulations. 

It is very easy to monitor the volume fraction of a configuration with the GRID 
method by a pixel count. With the SC method, configuration sampling after each 
disk addition is necessary. 

In general, a surprismgly large amount of CPU time is spent on PBC since they 
must be applied during both configuration generation and sampling However, 

FIG 3. A computer-generated (512 x 512 ptxels, -2000 pixels per disk) conliguratlon of fully 

penetrable disks (.i = 0, R = 0.05) at d2 = 0 5 
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PBC can be more quickly and simply handled using the GRID method than the SC 
method. The reason for this is described in simulation details given below. 

B. Srmulation Details 

All simulations were performed using the GRID method (with PBC) on an IBM 
4341 computer. Images of the mner (impenetrable) disks of radius A.R and the outer 
concentric disks of radius R were stored in separate 256 x 128 INTEGER*4 arrays 
(32-bit integers, therefore 1024 x 1024 bits). Storing each image requires 128 Kb 
( 1 Megabit ). A multiplicative congruential random number generator with mul- 
tiplier 16807 and modulus 2” - 1 was used both m conliguration generation and 
sampling. This generator has good lattice statistics and relatively fast execution 
time [29]. 

The pixels along either axis are numbered 0, 1,. . . . . 2” - 1 (We use m = 10). This 
numbering scheme permits a simple, rapid bit-masking algorithm for PBC to be 
used. For example, the pixel ( - 200, 3000) is a replica of the pixel ( -200 AND 
1023, 3000 AND 1023) = (824,952). Bit testing and setting routines in the IBM 
VSFORTRAN library were used (BTEST, IBSET, IBCLR, ISHFT, IOR, and 
IAND). 

If too small a value of m IS used, small objects will become misrepresented (small 
disks will appear to be multisided polygons, for example). If too large a value of m 
IS used, the pixel “painting” time per object during configuration generation as well 
as the memory requirements may become excessive. Sampling time is affected only 
if the increased memory requirements force a change of storage media. 

The coordmates of the center of each prospective disk to be placed are generated 
using Independent streams of random numbers. For convenience, the centers of all 
disks are centered on pixel sites. Because the impenetrable cores may not overlap m 
the PCS model, before placing any disk (except the first), we must test that its 
impenetrable core (of radius AR) does not overlap the core of a previously placed 
disk This IS done by extracting a square “window” of pixels from the impenetrable 
core image. The prospective disk’s core is first “AND-ed” onto the window. If there 
IS overlap, not all bytes m the window will be zero, and a new disk center is 
generated and the process is repeated. A pixel count in the “penetrable” image is 
maintained at all times since the disk volume fraction is simply the ratio of the 
number of “1” pixels to the total number of pixels. Thus, a wmdow IS extracted 
from the “penetrable” image where the prospective disk would fall. The disk is 
“OR-ed” onto this window since overlap is allowed. The disk volume fractions with 
and without the new disk are compared to the desired disk volume fraction &. 
Configuration generation is complete when the volume fraction without the new 
disk IS closer to the desired dz than with it Included. (The tolerance on I$? varies 
with the resolution parameter m; we were able to generate configurations with an 
RMS error in dz of less than 0.001 with m = 10.) Otherwise, the core disk IS 
“OR-ed” onto its window, both wmdows are recopied mto their respective images, 
and the volume fraction is updated. A new disk center is now generated and the 
entire process repeated 
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One advantage of the “wmdowing” technique is that PBC are applied only when 
the windows are copied from, or, if the disk is accepted, to the images. With the 
GRID method, to implement PBC it 1s not necessary to store anything outside the 
unit square; portions of a disk falling off an edge of the unit square wrap around to 
the oppostte edge (see Figs. 2 and 3). Another advantage of the windowmg techni- 
que is that it can be as easily applied to cases m which the particles have arbitrary 
shape. Hence, when the GRID method is utilized in conjunctton with the window- 
mg technique, the generation of media composed of arbitrary-shaped particles is 
not appreciably slower than that of media consisting of equi-sized disks. 

S,(r) may be found by tossing line segments of length r at random orientations 
onto the “penetrable” images generated for a large number of representative con- 
figurations and measuring what fraction of the time both ends of the line segments 
fall in the matrix phase. A faster way of obtaining S, is to exploit the homogenetty 
and isotropy of the system by forming a “sampling template” to test, for example, 
20 points arranged m a ring, equiangularly spaced at distance r from a random 
central point (see Fig. 4). A large number of sampling templates (say, 1000) are 
used to test each configuration. 

For purposes of comparison, we carried out simulations using these two 
sampling techniques for distributtons of fully penetrable disks (for which we have 
the exact result (8)) and of totally impenetrable disks at lower densities (which can 
be compared to the theoretical results of Torquato and Lado [17]). The method 
which makes use of the sampling template was found to give superior convergence 
to the known exact results because a much larger number of trials could be perfor- 
med in a given time period. This becomes even more important when higher order 
S,,, such as S, are to be simulated and integrated-a subject of a future study. 

FIG 4 Samplmg templete to test for S2 
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x=0 

l l l Slmulatlon 

- Exact Eq (8) 

l&=0 1 
cc-c,;:= - 0 

s 
2 0 

0.7’ 

s * 05’ 

0 34 0 

0 0 I’ 

&=O 9 

FIG 5 A comparison of RSA slmulatlon results for Sz m the PCS model for fully penetrable disks 
(I = 0) to the exact results obtamed from Eq (8), for #? = 0 I, 0 3. 0 5, 0 7, and 09 The pomts are the 
slmulatlon data and the curves are the exact results 

TABLE I 

RMS Dewatlons of Simulation Results for the Cases I = 0 and I = 1 
from Correspondmg TheoretIcal Results (Eq (8) and Ref [17]. 

respectively) 

RMS Devlatlon 

Fully 
penetrable disks 

L=O 

Totally 
Impenetrable disks 

I=1 

01 0000618 0000431 
02 0 000763 
03 0 000434 0001356 
04 0 001663 
05 0000952 0 002333 
07 0001553 
09 0000187 
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Accordmgly, we compute S, using the faster sampling method. The mean CPU 
time to test 1000 sampling templates was 10 s. 

IV. RESULTS AND DISCUSSION 

In Figs. 5-9, we present SJr) for distributions of disks m the PCS model for 
,4 = 0, 0.5, 0.7, 0.9, and 1, respectively, at selected values of the disk volume fraction 
&. A total of 1000 sampling templates were employed to test each of 100 con- 
figurations for all 4*, except the jamming-limit value. Only 20 configurations were 
used for the jamming-limit cases. 

For the instance of fully penetrable disks (A= 0), Fig. 5 also includes exact results 
as obtamed from Eq. (8). The RMS deviations from the exact results are presented 
in Table I. It is seen that the agreement between simulation and exact results is 
excellent; the largest RMS relative deviation being 0.16 % at dz = 0.7. 

At the opposite extreme of totally impenetrable disks (A= 1 ), we compare our 
RSA simulation results to the theoretical results of Torquato and Lado [ 173 for an 
equilibrium distribution of such disks (Fig. 9) The calculation of S, in Ref. [ 171 
mvolves an integral over, among other quantities, the radial distribution function 
g(r) Included in Table I is the RMS deviation from the Torquato-Lado results. 

1 - r . - 1 ., . . 

0 I 2 3 4 5 

r/R 

FIG 6 RSA stmulatton results for .S: m the PCS model for an tmpenetrabthty parameter 1= 0 5 at 
selected values of the dtsk volume fractton & The pomts are the slmulatton results and the curves are 
sphne Rts 
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h=O 7 

l l l Simulation 

- Splme Fit 
0 9’ 

q&=0 1 
I, 

0 11 

#J~=O 907 (Jamtmng Llmlt) 
J 

d 
G , 

1 2 3 4 5 

r/R 

FIG 7 As for Fig 6, with 1= 0 7 

h=O 9 

l l l Slmulatmn 

- Splme Rt 

&=O 667 (Jammmg Llmlt) 

t 1 
0 1 2 3 4 5 

l-/R 

FIG 8 As for Fg 6, wtth 2 =09 
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Interestmgly, the agreement between the equrlibrium and our RSA results is 
excellent, even at high particle densities at which the respective radial distribution 
functions are distinctly different [24, 301. Clearly, the averaging process of 
integration over g(r) is the reason why S, is insensitive to differences between the 
equilibrmm and nonequilibrium (RSA) distributions for 1= 1. Note that the RSA 
results presented in Fig. 9 are new. S,(r) is a damped, oscillating function, 
oscillating about its long-range value of ~5: wtth an amplitude that becomes 
neghgible on the scale of our figures after several diameters: as indication of some 
short-range order. As the density of disks is increased, the correlation length 
(defined to be the distance at which (S,(r) -4:) becomes negligible) 1s seen to 
Increase. By contrast, the corresponding S,(r) for 1= 0 (Fig. 5) is seen to exponen- 
tially decay to 4: when r = 2R, and remains equal to & for r > 2R: an indication of 
the total absence of any spatial correlation. 

In Figs. 6-8 we present, for the first time, results for S,(r) at the intermediate 
values L = 0.5, 0.7, 0.9, respectrvely. We also obtained, but do not report, results for 
cases in the range 0 < 2 < 0.5. For 0 < 1< 0.5, S, was neghgibly different than S, for 
fully penetrable disks (A= 0) at the same d2. Thus, even though exclusion volume 
effects increase (i.e., although the amplitude in the oscillations of g(r) increase) as d 
is made to Increase, S, is not sensmve enough to reflect these microstructural 

I l l l Slmulatmn 
- Ref 17 

J 
I 

. 
. l l l . 

l . 
. . . l 

. 
@,=O 55 (Jamnung Llmlt) 

1 

FIG 9 A comparison of RSA slmulatlon results for S, m the PCS model for totally Impenetrable 
disks (A= 1) to the correspondmg eqmhbrmm results of Torquato and Lado [ 173, for & = 0.1, 0 2, 0.3, 
04, and 0 5 The slmulatlon of Sz at the Jammmg hmlt (dl z 0 55) IS also Included The pomts are the 
slmulatlon results and the curves are eqtuhbnum results. 
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differences m the range 0 < /, ~0.5. The general reason for this has already been 
noted. For 0.5 < A< 1, the amplitude of the osctllattons in SZ for constant d2 
increases as 1 increases, as expected. It is only when i is near umty (A 2 0.9) that 
one can detect appreciable oscillations in Sz. 

Note that for the cases A= 0.7, 0.9, and 1 (Figs. 7-9) we also computed the 
corresponding jamming-limit volume fraction d,*. For example, using the GRID 
method, we found that the jamming limit occurred at dz = 0.55 for A = 1. This 
calculation involved 20 contigurattons, 10’ attempts to place dtsks per 
configuration, and approximately 200 disks per configuration. Feder [24], using 
the SC method, found the jamming limit occurred at #Z 2 0.547. Feder used 30 
configurations, 10’ attempts, and approximately 2700 disks per configuration. In 
earlier work, Finegold and Donnell [31] reported dZ z 0.5. They used the GRID 
method (1024 x 1024 pixels), but used disks about one-half the stze we used 
(R 2 0.014). In light of the accuracy we achieved, we believe the disk size, and not 
the GRID method, as Feder suggests, were responsible for the lower value 
calculated by Finegold and Donnell. 

Lastly, in Fig. 10, we present results for the specific surface s for A = 0, 0.5, 0.7, 
0.9, and 1 (at selected d2) as computed from Eq. (6) and our simulattons. For ,I = 0 
and A. = 1 our results may be compared to the exact results s = 2y$,/R and 
r = 24,/R, respectively. The RMS deviations are, respectively, 0 77 % and 1.33 % 

1 0‘ 

0 6’ 

SRO 6’ 

0 4’ 

0 2. oo: 
00 02 04 

9, O6 
06 10 

FIG 10 The reduced specdic surface sR versus &, as calculated from the slmulatlon results (pomts) 
usmg Eq (6), for 1= 0, 0.5, 0 7, 0.9, and 1 Sohd hnes for i, = 0 and I = 1 are exact results. Dashed hnes 
for I = 0.5, 0 7, and 0 9 are sphne fits Note that for i, = 0 9, we report sR for & = 0 a volume-fraction 61, 
value not given m Fig 8 
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(Note that numerical differentiation of simulation results causes error 
magnification.) The results given for 2 = 0.5, 0.7, and 0.9 are new. As expected, 
s monotonically increases as the impenetrability parameter ,I increases at 
constant &. 

V. CONCLUDING REMARKS 

Our results for Sz in the special limits A = 0 (fully penetrable disks) and ,I = 1 
(Impenetrable disks) show excellent agreement with previous work, as does our 
prediction of the jamming limit volume fraction for random sequential addition at 
L = 1. This validates the methods used for generating and sampling representative 
configurations of synthetic disordered media. It was shown that these methods may 
be applied to media consisting of particles of arbitrary shape. Although we focused 
our attention on 2D media, the simulation techniques reported in this study can be 
easily extended to 3D media. 

Moreover, we report, for the first time, results for Sz and the specific surface s at 
intermediate values of the impenetrability parameter 1 in the PCS model. As ,I 
increases (i.e., as the radius of the inner hard core increases), the amplitudes of the 
oscillations in S2 become more pronounced, as expected. For 0 < ,I< 0.5, however, 
S? IS virtually insensitive to II, behaving (to a good approximation) as the 
corresponding two-point function for fully penetrable particles (A= 0). 

The high-speed sampling method outlined is well suited to prediction of higher 
order S, such as Sj and, in addition, is independent of the shape of the inclusions 
and any penetrability constraints. In subsequent papers, we shall employ this 
sampling technique to compute S, and bounds on bulk properties which depend on 
S, for distributions of disks and ellipses. 
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