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Abstract
We determine the site and bond percolation thresholds for a system of 
disordered jammed sphere packings in the maximally random jammed state, 
generated by the Torquato–Jiao algorithm. For the site threshold, which 
gives the fraction of conducting versus non-conducting spheres necessary 
for percolation, we find ( )=p 0.3116 3c , consistent with the 1979 value of 
Powell 0.310(5) and identical within errors to the threshold for the simple-
cubic lattice, 0.311 608, which shares the same average coordination number 
of 6. In terms of the volume fraction φ, the threshold corresponds to a critical 
value φ = 0.199c . For the bond threshold, which apparently was not measured 
before, we find ( )=p 0.2424 3c . To find these thresholds, we considered two 
shape-dependent universal ratios involving the size of the largest cluster, 
fluctuations in that size, and the second moment of the size distribution; we 
confirmed the ratios’ universality by also studying the simple-cubic lattice 
with a similar cubic boundary. The results are applicable to many problems 
including conductivity in random mixtures, glass formation, and drug loading 
in pharmaceutical tablets.

Keywords: percolation, jammed spheres, filling factor

(Some figures may appear in colour only in the online journal)

1.  Introduction

When spheres are packed in a disordered jammed arrangement, they are in direct contact with 
each other at several points, and create a contact network. The number of neighbors of each node 
in this network is between four and twelve with an average of six, not counting non-jammed 
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spheres—the so-called rattlers [1]. A natural question to ask is what the percolation threshold 
of this network is [2]. That is, say a certain fraction p of the spheres are conducting and the rest 
are non-conducting. What is the value of p at which long-range conduction first occurs? For 
the contact network or graph, this quantity corresponds to the site percolation threshold. One 
could also ask for the bond threshold of the network. These are fundamental and practically 
important questions about packings, which however have barely been addressed numerically.

Practical applications of knowing the threshold for packed particles include formation of 
glasses in binary metallic systems [3], combustion in packed mixtures [4], and controlling 
conductivity in a electric arc furnace [5]. An important application is in the design of pharma-
ceutical tablets, where the composition can be a packed mixture of soluble and insoluble parti-
cles. Percolation has been used extensively in the design of drug release and tablet compaction 
[6–12]. This work has relied substantially on the percolation properties of simple lattices.

From a theoretical point of view, it is useful to find the thresholds of various kinds of 
networks. While thresholds on numerous three-dimensional lattices have been extensively 
studied (e.g. [13–19]), most have been for regular lattices of constant coordination number. 
The disordered jammed network provides an example of a three-dimensional system with a 
wide distribution of nearest neighbors, complementing the Poisson–Voronoi tessellation net-
work [20] and the Penrose quasi-crystal [21, 22], whose percolation thresholds have both been 
studied. Other recent works on percolation thresholds include [23–28].

The first determinations of the site threshold of the disordered jammed hard-sphere net-
work were done experimentally—conducting and insulating balls of various materials were 
randomly packed and the critical fraction pc for long-range conductivity to occur was meas-
ured. In 1974, Fitzpatrick et  al [29] measured =p 0.27c  for a mixture of 5000 aluminum 
and acrylic spheres. In 1978, Ottavi et al [30] found ≈p 0.30c  by studying a system of  ≈105 
conducting and insulating molded ABS plastic spheres. This was followed in 1979 by the first 
Monte-Carlo study of connectivity of a disordered jammed packed-sphere system, carried out 
by Powell [31, 32], who determined the site thresholds for packings created by the method 
of Tory et al [33] and Matheson [34] where spheres are deposited vertically in a gravitation-
like field. Powell found ( )=p 0.310 5c , where the number in parenthesis is the error in the last 
digit, and noticed that this was within error bars of the threshold  ≈0.3116 for site percolation 
on the cubic lattice, which has a uniform coordination number of 6. In 1982, a hybrid exper
imental/simulation study was performed by Ahmadzadeh and Simpson [35], who carried out 
simulations using the experimentally derived contact network of Bernal, and found =p 0.32c . 
In 1986, Oger et al [36] experimentally measured a threshold of 0.29 using a system of glass 
beads, some silver-coated, which deformed somewhat by the pressure of the packing. In 1996, 
Sunde found a threshold of about 0.30 by a Monte-Carlo simulation of packing around a seed 
of contacting spheres [37]. There has been more recent work studying percolation of mixtures 
of sphere of different radii [38]. As can be seen, most of this work is rather old and of rela-
tively low precision, and only concerns site percolation; as far as we can tell no measurements 
have been made of the bond threshold of the jammed sphere contact network.

The goal of this paper is to find the site and bond thresholds of the disordered jammed 
packed-sphere network to relatively high precision, and to explore efficient numerical meth-
ods to find precise thresholds for such systems for future work.

A complicating factor in this endeavor is that in simulations, as in real systems, randomly 
packed spheres can have different final packing fractions and correlation properties depend-
ing upon the method of packing [1]. Torquato et al [39] introduced a mathematically precise 
definition of a maximally random jammed (MRJ) state as the most disordered packing subject 
to the condition that it is jammed (mechanically stable). Torquato and Jiao (TJ) [40] devised 
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an algorithm that produces dense random packings close to this state. Other protocols can 
be devised that have different packings [41]. A natural question to ask is how the different 
packings affect the percolation properties. As a first step in this program, we study the precise 
site and bond thresholds of packings produced by the TJ algorithm, which gives packing of 
density of 0.639 [42].

An important early development in the understanding of percolation thresholds was the 
introduction of the critical volume fraction (CVF or φc) by Scher and Zallen [43]. For regular 
lattices with uniform nearest-neighbor bond lengths of unity, they considered placing spheres 
of unit diameter at each vertex; the fraction of space occupied by each sphere gives the filling 
fraction f. Multiplying this quantity by the site percolation threshold pc yields φ = p fc c . For 
the three-dimensional systems that were studied, it was found the φc falls in a narrow range 
of 0.144–0.163. Likewise, one can define a critical filling fraction for the disordered jammed 
spheres as the fraction of space occupied by the conducting spheres at the critical point. Using 
the packing density f  =  0.59, Powell found φ = 0.183c , somewhat higher than values for other 
three-dimensional systems. Finding φc for the MRJ system is another motivation for this work.

We mention that percolation of jammed particles on discrete lattices has also been studied, 
for example, the percolation of dimers in two and three [44] dimensions, and percolation of 
rectangles adsorbed by random sequential adsorption [45]. In the continuum, it seems that 
packed spheres is the only jammed system whose percolation behavior has been studied.

In the following sections we discuss invariant ratios that we use, describe the simulation 
methods, give the results of the study on the MRJ, and for comparison present results for a 
simple cubic lattice. We also investigate a two-dimensional system to make contact with some 
previous work. We close with a discussion of the results.

2.  Methods

To carry out this work, we analyzed three unique samples of N  =  2000,60 00, and 10 000 MRJ 
sphere packings, generated by the TJ algorithm. The overall system shapes were cubic with 
periodic boundary conditions in all directions. In a random packing, a small fraction of the 
spheres constitute the rattlers that are not locked into the structure. For the three random pack-
ings considered here, the number of rattlers were 34, 87, and 130 respectively—about 1.5% of 
the total number of spheres. We assume that these rattlers do not contribute to the percolating 
networks, even though a conducting rattler could sporatically connect two paths. On the other 
hand, we include the rattlers when we consider the filling factor f of the networks, though 
including the rattlers does not change p (the fraction of conducting spheres) since the rattlers 
are conducting or insulating spheres with the same probability as the rest of the spheres.

To measure the percolation threshold for such relatively small systems is somewhat of a 
challenge. One possible approach would be to find the probability of the existence of a wrapa-
round cluster, which is known to lead to rapidly converging estimates for pc [46, 47]. However, 
the data files that we used only contained neighbor lists of each indexed particle with no infor-
mation of position or where the periodic boundaries were crossed. (This sort of neighbor-list 
file is common for networks.) Consequently, we could not use the wraparound method here.

A second approach would be to look at the distribution ns( p ) of clusters of size s at different 
values of p and find the value of p such that ∼ τ−n ss  where τ≈ 2.1891 for three-dimensional 
percolation [15, 17]. We attempted this here; however, for such small systems, the finite-size 
effects overwhelm the power-law behavior and makes this method inaccurate.

A third method, which we follow here, is to study dimensionless quantities related to the 
cluster statistics that are universal at the critical point, similar to the Binder ratios used in 
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studies of critical phenomena. One property that we consider is the ratio of the square of the 
size of the largest cluster to the second moment
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A second quantity we consider is the ratio of the fluctuations in the largest cluster size to the 
square of the largest cluster size:
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The universality of R1 was discussed by Aharony and Stauffer [48] and follows from the 
finite-size scaling of /∼ β ν

∞
−P L , /∼ γ νS L , N  =  Ld with the critical exponents satisfying the 

hyperscaling relation β γ ν+ = d2  (for ⩽d 6) where d is the dimensionality. The universality 
of R1 can also be seen from the fact that it is the ratio of the square of largest cluster divided 
by a sum that is dominated by the squares of large clusters. The large clusters will be similar 
for different systems of the same shape at the critical point, apart from system-dependent met-
ric factors that cancel out, so this ratio is prima facie universal. Likewise R2 also depends on 
ratios of squares of largest clusters and is also expected to be universal. However, universality 
of these two quantities is limited in the sense that their values depend upon the shape of the 
boundary of the system, and the boundary conditions, since those things will affect the proper-
ties of the large clusters. This shape-dependent universality is seen in other quantities, such as 
a ratio related to properties of clusters connected to the origin in a finite system [49], crossing 
probabilities [50], and others [48]. Thus, to compare values of R1 and R2 to other percolating 
systems, it is necessary to consider systems of the same overall shape and boundary condition.

Fluctuations in the largest cluster near pc were previously discussed by Coniglio and 
Stauffer [51–53], who showed that ⟨ ⟩ ⟨ ⟩−s smax

2
max

2 scales as ∣ ∣− γp pc , the same as ⟨ ⟩smax
2 and 

the susceptibility χ near the critical point, implying that R2 goes to a finite value. They did not 
discuss the behavior for p away from pc, nor the shape-dependent universality of this quantity. 
As a test of our program, we also consider this 2D system below and find similar results.

To carry out the measurement, we use the algorithm of Newman and Ziff (NZ) [46, 47], in 
which sites or bonds are made occupied one at a time in random order, and a record is kept of 
various quantities (smax, smax

2 , S) as a function of the number of occupied sites or bonds n. This 
is the so-called microcanonical value. Then, to find the canonical value representing a system 
for a given p, we convolve with a binomial distribution, though for larger systems the differ-
ence between the microcanonical and canonical values can be quite small. For a microcanoni-
cal quantity Qn, the convolution to the canonical Q( p ) is given by
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Methods to carry out the convolution, including how to calculate the binomial distribution 
by using recursion, are described in [47]. The results of the microcanonical calculations are 
stored in one file, and a separate program is run to carry out the canonical convolution in any 
desired range of the values of p.
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The advantage of using the NZ method is that it allows one to find the values of the 
observables for all values of p in a single run, averaged over many runs to get good statistical 
behavior. This was particularly useful here because we did not have a good idea in advance of 
the behavior of the ratios R1 and R2 and where the curves for different N crossed.

3.  Results

3.1.  Disordered jammed sphere packings

We carried out 107 simulations on the three systems, N  =  2000,60 00 and 10 000. Figure 1 
shows plots of the quantites R1 and R2 as a function of p for site percolation for each N. It can 
be seen that the curves appear to cross at a single point ≈p 0.3116, whereas the maxima in 
R2 occur below this point and at different values for different size systems. Insets show the 

Figure 1.  Universal ratios R1 (upper) and R2 (lower) versus p for the three samples 
of random packing for site percolation. Insets show scaling plots of Ri versus 

( ) /= − νz p p Lc
1 , with =p 0.3116c , L  =  N1/3 and ν = 0.876, showing collapse to a 

universal curve.
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collapse of these curves for different size systems in a scaling plot. Similar curves are found 
for bond percolation.

Figure 2 shows the expansion of the curves of R1 in the very narrow range 0.3115 ⩽ 
p 0.3119⩽ , and here it can be seen that the curves do not cross exactly at a single point 
but at different points, due to corrections-to-scaling contributions and perhaps also statisti-
cal fluctuations. The curves of N  =  2000 and 6000 cross at =p 0.31 178, and the curves of 
N  =  6000 and =N 10 000 cross at p  =  0.3117. We do not have enough points to make a pre-
cise extrapolation, and these data might be biased because we have only one sample of each 
lattice, but a reasonable extrapolation suggests ( )=p 0.3116 3c . We estimate the error bars by 
comparing the two different methods of finding pc (using R1 and R2, which is not shown here.)

Figure 3 shows the crossing curves for bond percolation, from which we estimate the 
threshold to be 0.2424(3).

In figure 4 we show a scaling plot for the probability a point belongs to the largest clusters, 
⟨ / ⟩=∞P s Nmax . We assume ∞P  satisfies the usual scaling relation [2] (( ) )/ /= −β ν ν

∞P L F p p Lc
1  

where β = 0.4181, and ν = 0.876 are standard 3D scaling exponents [15, 17, 54] and F(z) is 
the scaling function. We see a good collapse of the data.

3.2.  Comparison to Coniglio and Stauffer (2D)

As a check of our program and to make contact with previous results, we also considered a two-
dimensional (2D) site-percolation system with open boundary conditions of size ×290 290, 
exactly the system studied by Coniglio and Stauffer in 1980 [51]. They published the values of 
two quantities at p  =  0.593 (the value for the threshold assumed at that time): ⟨ ⟩/χ =s 7.3max

2  
and ⟨ ⟩ /χ =s 6.4max

2 , where ⟨ ⟩χ = −S smax
2  is the susceptibility, defined as the mean square 

size leaving out the largest cluster Smax. Their results imply R2  =  7.3/6.4  −  1  =  0.141. These 
authors generated 28 000 samples, which they believed to be the most extensive simulation 
of a single percolation problem at that time. Running our program on a laptop computer for a 
few days, we simulated 108 samples. With the NZ results we could calculate these quantities at 

Figure 2.  Expanded view of R1( p ) from figure 1 for site percolation of the jammed 
spheres, showing that the curves do not cross precisely at a single point.
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any value of p. Taking p  =  0.593, we find ⟨ ⟩/ ( )χ =s 7.307 1max
2  and ⟨ ⟩ / ( )χ =s 6.481 1max

2 , con-
sistent with Coniglio and Stauffer’s values, and yielding R2  =  7.306/6.481  −  1  =  0.1274(1). 
Taking = =p p0.592 746 c, we find ⟨ ⟩ / ( )χ =s 7.040 1max

2  and ⟨ ⟩ / ( )χ =s 6.228 1max
2  yielding 

R2  =  0.1304(1). Notice that by changing p a relatively small amount we changed the values of 
these quantities rather substantially.

Figure 3.  Expanded plot of R1( p ) for bond percolation of the disordered isostatic 
jammed spheres.

Figure 4.  Scaling plot of /β ν
∞L P  versus ( ) /− νp p Lc

1  where ⟨ / ⟩=∞P s Nmax  for site 
percolation on the packed spheres, with =p 0.3116c  and L  =  N1/3, showing collapse to 
a universal curve for p near pc. Values of N are given in the legend.
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We also looked at the finite-size scaling of these quantities by considering systems of vari-
ous sizes; the corrections to ⟨ ⟩/χsmax

2 , ⟨ ⟩ /χsmax
2 , and R2 seem to all scale as L−2, and we project 

for →∞L , ( ) → ( )R p 0.1302 12 c  for 2D. This compares to the 3D value on a periodic cube, 
R2  =  0.155.

3.3.  Cubic systems

For comparison, we also studied R1 and R2 for bond percolation on the cubic lattices, 
× ×L L L, with L  =  8,16 32 and 64, simulating, ⋅7.5 107, ⋅1.6 108, ⋅1.4 108, and ⋅3 105 sam-

ples each, respectively. In figure 5 we show the crossing points for R1 on an expanded scale. 
They suggest a value of ≈R 0.7841  at =p 0.248 812c , consistent with the value if ≈R 0.781  
for the packed spheres at criticality, supporting the universality of this quantity. We also found 
similar scaling behavior as seen in the packed sphere system.

Figure 5.  Expanded view of R1 versus p for bond percolation on a cubic lattice with 
dimensions given in the legend. Here the threshold is =p 0.248 812c  [13, 18].

Table 1.  Site and bond percolation thresholds of the jammed sphere packing and 
some other lattices with an average coordination number z of 6. f  =  filling factor and 
φ = f pc c

site.

Lattice z z pc
site f φc pc

bond

Kagome stack 6 6 0.3346(4) [65] 0.453 450 0.1517 0.2563(2) [65]
Simple cubic 6 6 0.311 608 [13, 18] 0.523 599 0.163 158 0.248 812 [13, 18]
MRJ sphere 
packings

4–12 6 0.3116(3)a 0.639 0.1990a 0.2424(3)a

Dice stack 5, 8 6 0.2998(4) [65] 0.604 500 0.1813 0.2378(4) [65]
Icosahedral 
penrose

4–10, 12 6 0.285 [21] 0.628 630 [22] 0.179 0.225 [21]

a  =  this work.
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9

4.  Conclusions

We found that the site threshold 0.3116(3) is numerically identical (within errors) to that of 
the simple cubic lattice 0.311 608. This means that if one started with conducting/insulating 
spheres in a simple cubic arrangement at the critical site threshold 0.311 608, and jiggled 
them under pressure to put them into the denser disordered jammed state, then the system will 
remain at or very close to the critical percolation point. This seems rather surprising, because 
while the average coordination number (6) does not change, the distribution of coordination 
numbers changes from exactly 6 to range from 4 to 12, and generally speaking, spreading 
out the distribution of neighbors causes the threshold to change—usually drop. However, we 
would still expect these thresholds to be rather close, and it is likely that the precise agreement 
is a coincidence.

The simple cubic lattice has crystallographic symmetry and long-range order that is absent 
in MRJ. The similarity in thresholds is a statement about the insensitivity of the threshold to 
the precise details of the short- and long-range order provided that the average contact num-
bers are the same.

For bond percolation, we find ( )=p 0.2424 3c , somewhat below the cubic system value of 
=p 0.248 812c  [13, 18]. Evidently, the coincidence of thresholds for site percolation does not 

occur for bond percolation.
In table 1 we compare the thresholds found here with other 3D systems with a coordination 

number of 6, both regular lattices (the kagome stack and simple cubic) and more disordered 
ones (the dice stack and the icosahedral Penrose lattice [21]). Having a distribution of coor-
dination number z is seen to lower the threshold, but this does not apply to the case of site 
percolation on the packed spheres. Because of the higher density of the spheres, the critical 
volume fraction of the spheres, φ = 0.199c , is the highest of this group.

Note that the icosahedral Penrose lattice has a range of coordination numbers with an aver-
age also of 6, and has site threshold of 0.285 and a bond threshold of 0.225 [21]; these thresh-
olds were found by an approximate method and the expected errors are not clear.

The results presented here were based on measurements of three carefully constructed 
samples of jammed particles. The systems we examined had been prepared for previous stud-
ies and the sizes were not chosen in any particular sequence. Future work could make use of 
more samples of each and a geometric sequence of system size and over a larger range (such 
as = …N 1000, 2000, 4000, 8000, ) to better extrapolate to a precise threshold value.

For the universal ratios, we find common critical values of ≈R 0.771  and ≈R 0.1552  and 
for both the jammed spheres and cubic lattice, and for both site and bond percolation. These 
are all similar periodic systems with a cubic boundary; showing commonality of these (shape-
dependent) universal amplitude ratios yields a further verification that these systems are in the 
same universality class.

Besides studying spheres, a great deal of work has been done studying the maximum 
jammed state of other systems (e.g. [55–62]). These systems will also possess a jammed con-
tact network—for example, in the tetrahedron system the mean number of nearest-neighbors 
is 12 [60]—and it would be interesting and practically useful to study their percolation thresh-
olds as well. Finding shapes that have low values of the critical volume fraction φ would be 
useful in minimizing the amount of conducting material needed in a composite for percolation 
to take place, for example.

These results are also relevant for drug tablet design where percolation considerations are 
known to control the release of drugs [6, 63], and here there is a large interest in modeling 
drug release by simulation [64]. An extension of this work for applications of drug design 
would be to confine the spheres in a bounded system, such as a wall or a large sphere. The 
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behavior of the system near these boundaries would be relevant for predicting drug delivery 
from the surface of the tablet. One would also be interested in the properties of the clusters 
of non-soluble particles that are released as a consequence of the dissolution of the soluble 
particles.
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