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Abstract. Hyperuniform many-particle systems in d-dimensional space dR , 
which includes crystals, quasicrystals, and some exotic disordered systems, are 
characterized by an anomalous suppression of density fluctuations at large length 
scales such that the local number variance within a ‘spherical’ observation 
window grows slower than the window volume. In usual circumstances, this 
direct-space condition is equivalent to the Fourier-space hyperuniformity 
condition that the structure factor vanishes as the wavenumber goes to zero. 
In this paper, we comprehensively study the eect of aspherical window shapes 
with characteristic size L on the direct-space condition for hyperuniform 
systems. For lattices, we demonstrate that the variance growth rate can depend 
on the shape as well as the orientation of the windows, and in some cases, the 
growth rate can be faster than the window volume (i.e. Ld), which may lead 
one to falsely conclude that the system is non-hyperuniform solely according 
to the direct-space condition. We begin by numerically investigating the 
variance of two-dimensional lattices using ‘superdisk’ windows, whose convex 
shapes continuously interpolate between circles (p  =  1) and squares (p →∞), 
as prescribed by a deformation parameter p, when the superdisk symmetry axis 
is aligned with the lattice. Subsequently, we analyze the variance for lattices 
as a function of the window orientation, especially for two-dimensional lattices 
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using square windows (superdisk when p →∞). Based on this analysis, we 
explain the reason why the variance for d  =  2 can grow faster than the window 
area or even slower than the window perimeter (e.g. like Lln( )). We then study 
the generalized condition of the window orientation, under which the variance 
can grow as fast as or faster than Ld (window volume), to the case of Bravais 
lattices and parallelepiped windows in dR . In the case of isotropic disordered 
hyperuniform systems, we prove that the large-L asymptotic behavior of the 
variance is independent of the window shape for convex windows. We conclude 
that the orientationally-averaged variance, instead of the conventional one 
using windows with a fixed orientation, can be used to resolve the window-
shape dependence of the direct-space hyperuniformity condition. We suggest 
a new direct-space hyperuniformity condition that is valid for any convex 
window. The analysis on the window orientations demonstrates an example of 
physical systems exhibiting commensurate-incommensurate transitions and is 
closely related to problems in number theory (e.g. Diophantine approximation 
and Gauss’ circle problem) and discrepancy theory.

Keywords: fluctuation phenomena, random/ordered microstructures, 

structural correlations

S Supplementary material for this article is available online
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1. Introduction

A hyperuniform state matter is characterized by an anomalous suppression of den-
sity fluctuations at large length scales [1–3]. The hyperuniformity concept provides 
a unified way to categorize crystals, quasicrystals, and certain exotic disordered sys-
tems [1, 2, 4]. Disordered hyperuniform states lie between a crystal and liquid: they 
behave like perfect crystals in the manner in which they suppress large-scale density 
fluctuations and yet, like liquids and glasses, are statistically isotropic without Bragg 
peaks. In this sense, disordered hyperuniform systems have a hidden order on large 
length scales, which endows them with novel physical properties [5–9]. During the 
last decade, it has been discovered that these systems play a vital role in a number 
of problems across the physical, mathematical, and biological sciences. Specifically, 
we now know that disordered hyperuniform materials can exist as both equilibrium 
and nonequilibrium phases, including maximally random jammed packings [10–12], 
Coulomb gas [13–15], certain fermionic and bosonic systems [16–18], liquids that freeze 
into degenerate disordered ground states [19], novel disordered photonic mat erials 
[6–8], spatial patterns of photoreceptors in avian retina [5], structure of bird feathers 
[20], highly excited states of ultracold gases [21], terahertz quantum cascade lasers  
[22], driven nonequilibrium systems [23–25], transparent dense disordered materials 
[9], and number theory [15, 26].

Consider a point process in d-dimensional Euclidean space dR  and let R xN , 0( ) 
denote the number of points contained in a d-dimensional window Ω, the shape of 
which is characterized by R, and where x0 denotes the position of the centroid; see 

figure 1. Density fluctuations can be quantified by RN
2 ( )σ , i.e. the variance in R xN , 0( ) 

over either the ensemble of the point process or the centroidal position x0 of the 

window for a single realization of the point process. The quantity RN
2 ( )σ  is directly 
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related to the pair statistics of the point process and the geometry of the window Ω 
in the following way [1–3]:

R R r r R rv h1 ; d ,N
2

1 2
d

( ) ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥∫σ ρ ρ α= +

R
 (1)

where ρ is the number density of the point process, Rv1( ) is the volume of Ω, and 
r R;2( )α  denotes the scaled intersection volume of Ω, defined in section 2.2. Here, rh( ) 

denotes the total correlation function of the point process, as defined in section 2.1. 
Using the relation (1) and Parseval’s theorem, one immediately obtains the Fourier 
representation of the local number variance [1]:

( ) ( )
( )

( ) ˜ ( )
R∫σ

ρ
π

α=R
R

k k R k
v

S
2

; d ,N d
2 1

2
d (2)

where kS ( ) is the structure factor of the point process and α k R;2˜ ( ) represents the 
Fourier transform of r R;2( )α .

For a Poisson point process, rh 0( ) =  for all r, and hence (1) yields that the num-
ber variance grows as fast as the window volume Rv1( ). This volume-like growth of 

RN
2 ( )σ  is typical of most disordered systems, including liquids and structural glasses [1, 

19, 27]. A hyperuniform [1] (also known as ‘superhomogeneous’ [28]) point process is 
defined by the following infinite-wavelength behavior of the structure factor:

kSlim 0,
k 0

( )
→

=
 (3)

which we call the Fourier-space hyperuniformity condition. The use of definition (3) in 
the relation (2) for spherical windows (and some aspherical windows with suciently 
smooth boundaries) implies that hyperuniform point processes have vanishing  
nor malized density fluctuations at large length scales as specified by [1, 3]:

R

Rv
lim 0,
Rv

N
2

11

( )
( )( )→

σ
=

∞
 (4)

Ω

xo

Ω

xo

Figure 1. Schematics indicating an observation window Ω and its centroid x0 for 
a disordered point pattern (left) and a periodic one (right), as adapted from [1].

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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which is the usual direct-space hyperuniformtiy condition. Henceforth, we will call this 

the spherical-window hyperuniformity condition. For spherical (and many apherical) 
windows, RN

2 ( )σ  for a hyperuniform point process has a growth rate that varies between 
the window surface area Rs1( ) and the window volume Rv1( ) in the large-window limit. 
The variance for perfect crystals and a large class of quasicrystals grows asymptotically 
like Rs1( ).

The hyperuniformity concept has been extended to two-phase heterogeneous media 
[2, 3]. Here, one needs to use the spectral density kṼ ( )χ  associated with the appropriate 

two-point probability function and the local volume-fraction variance RV
2 ( )σ . Then, the 

Fourier-space hyperuniformity condition is

klim 0,
k

V
0

˜ ( )
→
χ =

 (5)

and equivalently, the corresponding spherical-window condition is

R Rvlim 0.
Rv

V1
2

1

( ) ( )
( )→

σ =
∞ (6)

Hyperuniform systems can be identified through small-angle scattering experiments 
[29, 30], yielding either the structure factor kS ( ) or the spectral density χ kṼ ( ). However, 
for some systems, e.g. colloidal suspensions [31, 32], nano-copolymers [33] and simu-
lations [23], scattering experiments may not be available. In such instances, one can 

measure the local number variance RN
2 ( )σ  in direct space via microscopy to ascertain 

hyperuniformity of these systems [31]. In this paper, we focus on hyperuniform point 
processes.

Previous theoretical investigations on the number variance of hyperuniform systems 
have primarily focused on spherical windows. By constrast, little attention has been 
paid to the analysis of aspherical windows, except for a few investigations [34–37], 
including Beck’s study of the use of rectangular windows that have a fixed height and 
a special orientation to analyze the square lattice [35]. He showed that in this case, the 
variance can grow slower than the window surface area. Zachary et al [37] studied the 
two-dimensional checkerboard model and square lattice decorated by identical squares, 
and showed that their volume-fraction variances decrease as slow as the inverse of the 
window volume, i.e. Rv1

1( )− , despite the fact that these systems are hyperuniform (see 
(6)). In summary, we see that for certain window shapes, the spherical-window hyper-
uniformity criterion alone may lead one to falsely conclude that a hyperuniform system 
(as identified via the Fourier-space condition) is non-hyperuniform.

Thus, the overall objective of this paper is to understand quantitatively the eect of 
aspherical window shapes on the asymptotic growth rate of the variance, and to resolve 
the possible inconsistencies that may arise with respect to the spherical-window condi-

tion (4). It is noteworthy that the study of RN
2 ( )σ  for aspherical windows is an inter-

esting problem in physics and mathematics in its own right. For example, it has been 

shown that finding a window-shape that minimizes RN
2 ( )σ  of a point process is equiva-

lent to designing a finite-ranged repulsive pair potential that leads the point process 
to be the ground state [1]. For periodic systems and regular polyhedral windows, we 
will show that the window orientation with respect to the system significantly aects 

the large-window asymptotic behavior of RN
2 ( )σ  (section 4). This is also one of many 

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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physical examples [38–43], in which (in)commensurability of a certain parameter plays 
a crucial role in the physical properties, e.g. friction coecient [39] and Hall conduc-
tivity [42]. It is interesting to note that the analysis of this orientational dependence 
under the incommensurate condition (section 4.2) is closely related to Diophantine 
analysis in number theory [44] and discrepancy theory [35, 44].

We begin by studying the variance for the lattices using aspherical windows that 
have a fixed orientation with respect to the lattices. For this purpose, we numer ically 
investigate the variance for the square lattice using ‘superdisk’ windows. A superdisk is 
the two-dimensional version of the versatile superball in d-dimensional Euclidean space 

dR , whose shape is defined by

x x x L ,p p
d

p p
1

2
2

2 2 2+ + + =� (7)

where a positive real number p is called deformation parameter and L is called the char-
acteristic length scale. If the parameter p is smaller than 0.5, a superdisk is concave, and 
it interpolates smoothly between a cross (p  =  0) and a perfect square (p  =  0.5). On the 
other hand, a superdisk with p 0.5⩾  is convex and is continuously transformed from a 
square (p  =  0.5) to the circle (p  =  1) and to a square of side length 2L (p →∞), as shown 
in figure 2. Considering the case of p 1⩾ , we show that the asymptotic behavior of the 

cumulative moving average of the variance has the power-law form, i.e. L LN
2 ( )σ ∼ γ as 

L →∞. We numerically demonstrate that the exponent γ increases continuously from 1 
to 2 as the window shape becomes closer to the perfect square, i.e. p tends to ∞. When 
the window is a perfect square (p →∞), 2γ = , the value of which might lead one to 
falsely conclude that the square lattice is not hyperuniform, since it conflicts with the 
spherical-window condition (4). We say that for a d-dimensional hyperuniform system, 
the growth rate of the variance, as determined from the equation (1), is ‘anomalously’ 
large whenever the exponent d⩾γ  because it is larger than what we expect from the 
‘spherical-window’ condition (4).

Subsequently, we investigate the variance for the d-dimensional cubic (or hyper-
cubic) lattice using hypercubic windows (superball when p →∞) of side length 2L to 
understand the mathematical conditions under which the variance is anomalously large 
at large length scales. When the windows are perfectly aligned with the lattice, we 
show that the variance grows like the square of the window surface area, i.e. L2(d−1) (see 
appendix B). Surprisingly, this growth rate can be even faster than the window volume, 
Ld, and such large growth rate are typical of super-Poissonian point processes, such as 
systems at thermal critical points [45]. For more detailed analysis, we numerically and 
analytically investigate the two-dimensional case partly because the square is amenable 
to exact analysis and partly because it is the most frequently used aspherical window 
to detect the hyperuniformity of a two-dimensional system in direct space.

Figure 2. Illustration of superdisk shapes for several values of the deformation 
parameters p. From the left to the right p 0, 0.25, 0.5, 0.75, 1, 1.25,           = ∞.

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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We also demonstrate that the asymptotic growth rate of L,N
2 ( )σ θ  depends on the 

angle θ between the symmetry axes of the window and the lattice. Importantly, we 
identify two classes of angles, at one of which, so-called rational angles, the variance 

grows ‘anomalously largely’, i.e. L L,N
2 2( )σ θ ∼  as L →∞. We explain the origin of such 

an orientational dependence from two dierent points of view: the correlation of den-
sity fluctuations concentrated in the vicinity of the window surface, and conditional 
convergence of the 2nd moment (dth moment in dR ) of the total correlation function. 
Based on the analysis, we generalize the concept of ‘rational angles’ for the square 
lattice and square window to Bravais lattices and parallelepiped windows in dR  (see 
appendix A). To discuss the conditional convergence of the second moment of total 
correlation function, we investigate this integral for the circular and square boundaries 
with Abelian summability method (see appendix C). In the case of d-dimensional iso-
tropic disordered hyperuniform point processes, we prove that the asymptotic behavior 

of RN
2 ( )σ  is independent of the window shape if it is convex.
In addition, we suggest a new direct-space hyperuniformity condition (76) using 

the orientationally-averaged local number variance RN O

2 ( )σ . We prove that for a 

d-dimensional anisotropic hyperuniform point process, corresponding to either a crys-

tal or disordered one, RN O

2 ( )σ  always exhibits the same asymptotic behavior for any 

convex window shape. Then, we show that in the case of the square lattice and square 

windows, L LN O

2 ( )σ ∼ , which is consistent with the case for circular windows.

In section 2, we describe basic definitions and mathematical equations to compute 

the variance RN
2 ( )σ  for any window shape. We numerically compute the variance for 

the square lattice using superdisk windows of various shapes and show the relation 
between its asymptotic behavior and the deformation parameter p in section 3. In sec-
tion 4, we investigate the case of the two-dimensional square lattice with a square win-
dow. In section 5, we consider disordered hyperuniform point processes and study the 
asymptotic behavior of their variance for convex windows, including square windows. 
Orientationally-averaged variance is explained, and its asymptotic behavior is derived 
in section 6. Finally, we provide concluding remarks in section 7. A generalization of 
‘rational angles’ to d-dimensional Bravais lattices and parallelepiped windows is pre-
sented in appendix A. Then, we carry out some example calculations for the cases of 
the square lattice and rectangular windows with a fixed aspect ratio, and the triangular 

lattice and square windows. In appendix B, we show LN
2 ( )σ  for d-dimensional hypercu-

bic lattice with aligned hypercubic windows of side length 2L.

2. Background and definitions

2.1. Point processes

Roughly speaking, a point process in d-dimensional Euclidean space dR  is a distribution 
of infinitely many points r r, , ,1 2   �  in dR . For statistically homogeneous point pro-
cesses in dR  at a given number density ρ, r rg dn

n
n n( )ρ  represents the probability density 

for finding n points at r r r r, , ,n
n1 2     = � , and rgn

n( ) is called the n-particle correlation 

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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function. The statistical homogeneity of a point process implies that gn is determined 
by only relative positions of n particles, i.e. r r r rg g , , ,n

n
n n21 31 1( ) ( )= �  with r r rij j i≡ −  

for i j n1 ⩽ ⩽≠ .
The pair correlation function rg2( ) has a significant importance [9, 46, 47]. In  

systems without long-range order, rg 12( ) →  as r →∞. Therefore, it is useful to intro-

duce the total correlation function rh( ) defined as

r rh g 1,2( ) ( )≡ − (8)

which decays to zero for large r  in the absence of long-range order. The structure  

factor kS ( ) is related by Fourier transform of rh( ):

k kS h1 .( ) ˜( )ρ= + (9)

A (Bravais) lattice Λ in dR  belongs to a special subgroup of point processes, which 
can be expressed as integer linear combinations of d linearly independent vectors ai for 
i d1, 2, ,     = � , i.e.

⎧
⎨
⎩

⎫
⎬
⎭

R Z∑Λ = = ∈ = ∈
=

�x a nn n n n, , , .
i

d

i i
d

d
d

1

1 2(       ) (10)

Every lattice Λ has a reciprocal lattice Λ∗, which is a set of all reciprocal vectors q  
satisfying q xiexp 1( )⋅ =  for every x∈Λ. The structure factor kS ;( )Λ  of the lattice Λ 
is a sum of delta functions centered at each point in Λ∗ except for the origin:

k k qS
v

;
2

,
q

d

c 0

( ) ( ) ( )
\
∑

π
δΛ = −

∈Λ∗
 (11)

where 1/vc is the number density of lattice Λ, and k( )δ  is the d-dimensional Dirac delta 

function. We will use the following definition of Fourier transform kf̃ ( ) and the inverse 
transform rf ( ) (assuming their existence):

k r rf f e d ,k ri
d

˜( ) ( )∫= − ⋅

R
 (12)

r k kf f
1

2
e d .k r

d
i

d
( ) ˜( )⎜ ⎟

⎛
⎝

⎞
⎠ ∫π

= ⋅

R
 (13)

For radially symmetric functions, i.e. r rf f( ) ( )=  and k kf f˜( ) ˜( )= , the Fourier and 

inverse Fourier transform can be expressed as

f k r f r
J kr

kr
r2 dd d d

d
2

0

1 2 1

2 1
˜( ) ( ) ( ) ( )

( )
/ /

/∫π=
∞

− −
− (14)

f k k f k
J kr

kr
k

1

2
d ,

d
d d

d

2

0

1 2 1

2 1
( ) ˜( ) ( )

( )

/
/

/
⎜ ⎟
⎛
⎝

⎞
⎠ ∫π

=
∞

− −
− (15)

where J x( )ν  is the Bessel function of order ν.

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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2.2. Number variance and hyperuniformity

Consider a statistically homogeneous point process at the number density ρ in  
d-dimensional Euclidean space. Using an observation window Ω whose shape and orien-
tation are characterized by a set of parameters R, one can obtain the exact expression 

for RN
2 ( )σ  in both the direct- and Fourier-space representations [1]:

R R R R r r R rN N v h1 ; dN
2 2 2

1 2
d

( ) ( ) ( ) ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥∫σ ρ ρ α≡ − = +

R
 (16)

( )
( )

( ) ˜ ( )∫
ρ
π

α=
R

k k R k
v

S
2

; d ,
d

1
2 (17)

where kS ( ) is the structure factor, defined by (9), and r R;2( )α  is the scaled intersec-
tion volume of two identical windows but separated by r, i.e. Ω and rΩ+ . Note that 
both (16) and (17) represent the variance when windows have a fixed orientation with 
respect to the point process. Here, r R;2( )α  is expressed as the convolution of the win-
dow indicator functions x Rw ;( ):

r R
r R

R R
x R x r R x

v

v v
w w;

; 1
; ; d ,2

2
int

1 1
d

( ) ( )
( ) ( )

( ) ( )∫α ≡ = −
R

 (18)

where Rv1( ) is the window volume of Ω. Clearly, the volume integral of r R;2( )α  over 
dR  is equal to the window volume:

R R∫ ∫α α= = =R r R r r R r Rw v0; ; d ; d .2 2 1
d d

˜ ( ) ( ) ( ) ( ) (19)

For a d-dimensional sphere of radius R, the analytical expression for r R;2( )α  is well-
known in any spatial dimension d [48, 49]. The explicit expression for the Fourier 
transform of r R;2( )α  is given by

˜ ( ) ˜( )
( )

( / ) [ ( )]/ /α π= = Γ +k R
w k R

v R
d

J kR

k
;

;
2 1 2 .d d d

d2

2

1

2 2
2

 (20)

Denoting ≡x r R2/( ), ( )α r R;2  can be expressed in the series representation in terms of 
x for x  <  1 [49]:

r R c d x c d
d

n n d n
x; 1

1 1 2

2 1 3 2
,

n

n
n

2

2

2 1( ) ( ) ( ) ( ) (( )/ )
( ) ( ) (( )/ )∑α = − +

− Γ +
− Γ Γ + −=

∞
−

 (21)

where c d d d2 2 1 1 2 1 2( ) ( / )/ [ (( )/ ) ( / )]= Γ + Γ + Γ  and x( )Γ  is the Gamma function.
For a given window Ω and a realization X of a point process, RN ( )  represents the 

ensemble average of the number of particles of X within the window Ω, RN X;( ), over 
every realization X of the point process. The ergodic hypothesis enables us to equate an 
ensemble average to a volume average in a single infinite realization X [48], and trivi-
ally R RN v1( ) ( )ρ= . In practice, we implement both definitions to compute RN ( ) . 
The scaled intersection volume r R;2( )α  that appears in (16) can be interpreted as 
a monotonic repulsive pair potential energy with compact support, where R defines 

the interaction range. Thus, the point configurations that globally minimize RN
2 ( )σ  

in a fixed dimension d correspond to the classical ground states associated with this 
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repulsive pair potential [1]. Due to the integrability requirement of (16), the variance 
cannot increase faster than the square of window volume, Rv1

2( ( ))  [2].
The hyperuniformity concept has been recently generalized to treat systems with 

directionally-dependent structure factors, so-called ‘directionally-hyperuniform’ sys-
tems [3]. In this paper, unless otherwise stated, hyperuniform systems refer solely to 
direction-independent hyperuniform point processes, defined by (3).

For spherical windows of radius R, substituting (21) into (16), one can obtain [1]:

R v A R R B R R o R1 ,N N
d

N
d d2

1
1 1( ) ( ) [ ( ) ( ) ( )]σ ρ= + +− − (22)

where o xa( ) represents all terms of order less than xa, and coecients A RN ( ) and B RN ( ) 
are given by

r rA R h1 d
r

N
R

( ) ( )∫ρ= +
< (23)

r r rB R
d d

d
h

2

2 1 2 1 2
d ,

r
N

R
( ) ( / )

( / ) (( )/ )
( )∫

ρ
= −

Γ
Γ Γ + <

 (24)

where B RN ( ) is essentially the dth moment of the total correlation function h r( ). In the 
limit of R →∞, coecients AN and BN are convergent for all periodic point patterns, a 
large class of quasicrystals, and some disordered point patterns whose total correlation 
functions h r( ) decay to zero faster than 1/rd+1 [1, 2, 50].

Since kA R Slim lim kR N 0( ) ( )→ →=∞ , a hyperuniform system has the vanishing scaled 
long-wavelength density fluctuations, i.e. R v Rlim 0R N

2
1( )/ ( )→ σ =∞ . When the structure 

factor goes to zero with power-law form k kS ( )∼ α and 0 1⩽α< , the coecient term 
B RN ( ), defined by (24), asymptotically converges to a function of R and hence, [1, 2, 17]

R

R

R R

R

R

, 0 1

ln , 1

, 1

, .N

d

d

d

2 1

1

( ) ( → )

⎧
⎨
⎪

⎩
⎪

σ
α

α
α

∼
< <
=
>

∞

α−

−

−
 (25)

For some systems, e.g. lattices, the associated variances oscillate around some global 
average behavior so that it can be dicult to obtain smooth asymptotic behaviors. In 
such cases, it is advantageous to use the cumulative moving average of the variance 

RN
2 ( )σ  [1, 34], defined as

R
R

x x
1

d ,N

R

N
2

0

2( ) ( )∫σ σ≡ (26)

to observe the asymptotic behavior.

2.3. Basic quantities for a square window and square lattice

Consider a square lattice in 2R  of unit lattice constant. Its total correlation function 
can be expressed as

r rh r n 1,
i n

i

1

2

( ) ( ) ( )
⎡

⎣
⎢

⎤

⎦
⎥∏ ∑ δ δ= − − −

= =−∞

∞

 (27)
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where ri is ith component of position vector r. Its isotropic form is

h r
Z

r
r r

2
1,

k

k

k
k

1

( ) ( )∑ π
δ= − −

=

∞

 (28)

where rk is the radius of kth shell, and Zk is the corresponding coordination number. 
Both expressions immediately follow from the definition of the square lattice and pair 
correlation function rg2( ), given in section 2.1. The structure factor forms another 
square lattice, excluding the lattice point at the origin:

k k n kS k n2 2 2 2 .
n i n

i

0

2 2

1

2

2

( ) ( ) ( ) ( ) ( ) ( )
\Z

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥∑ ∏ ∑π δ π π δ π δ= − = − −

∈ = =−∞

∞

 (29)

The scaled intersection volume of two identical, aligned square windows of side 
length 2L [37], whose centers are separated by r, is given by

r L
r

L
L r; 1

2
2 ,

i

i
i2

1

2

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟∏α = − Θ −

=
 (30)

where x( )Θ  is the Heaviside step function, defined as

x
x

x

1, 0

0, 0
.( ) ⩾⎧

⎨
⎩

Θ =
< (31)

The Fourier transform of r L;2( )α  is

˜ ( ) ( )
⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟∏α =

=

k L
L

k L

k
;

2 sin
.

i

i

i
2

2

1

2 2

 (32)

We note in passing that α k L;2˜ ( ) is the same as the intensity profile of Fraunhofer 
diraction pattern through a square aperture of side length 2L. From this analogy, we 
can know that ‘brightest’ spots of (32) lie on principal axes on which either kx or ky is 
zero. On those principal axes, α k L;2˜ ( ) is expressed as

˜ (( ) )
( )⎛

⎝
⎜

⎞

⎠
⎟α =k L

k L

k
0, ; 4

sin
,y

y

y
2

2

 (33)

and the magnitudes of peaks are proportional to L2.

3. Variance for square lattice with superdisk windows

The asymptotic expression for N
2σ  for non-circular windows has been intensively stud-

ied in 2Z  (the square lattice) in various contexts, including the ‘lattice-point count-
ing problem’ in number theory [34, 51–53], discrete math [35, 44], and stereology 

[54]. It has been known that the asymptotic behavior of N
2σ  can sensitively depend 

on the window shape [34, 55] as well as the orientation of the window [35, 56]. For 

instance, a aN
2 3 2( ) /σ ∼  when the window is x y xa y a, 2 2 4 4{( ) ( ) ⩽ }Ω = ∈ | +R  [34], and 
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W H W H,N
2 2 2( )σ ∼ +  when the window is a W H×  rectangle whose sides are parallel 

to the principal axes of the lattice [55]. All of these asymptotic behaviors are dierent 
from the linear growth rate in R, which one expects using circular windows [1, 34].

In this section, to observe how the window shape can aect the growth rate of the 
variance, we measure the variance for the square lattice using a superdisk window with 
a fixed orientation. Superdisks are two-dimensional figures whose shapes are described 
by the equation

x y L ,p p p2 2 2+ = (34)

where L is called the characteristic length scale, and p, also known as deformation 
parameter, is a positive real number. Superdisks are ideal for our purpose to probe the 
eect of the window shape on the variance because one can generate a family of super-
disks just by changing the parameter p. When p →∞, a superdisk is just a square of 
side length 2L. As p decreases from ∞ to 1, superdisks smoothly interpolates between 
the square (p →∞) to the circle (p  =  1). When p  <  0.5, the superdisk is concave and 
becomes a cross in the limit p 0→ .

Figure 3(a) demonstrates the variances for square lattice using two dierent super-
disks: one is a circular window (p  =  1) and another is a virtually square window (p  =  16). 
As one can expect, L LN

2 ( )σ ∼  when p  =  1. Importantly, when the window shape is a 

perfect square (p →∞), one can obtain the closed expression for the variance by substi-
tuting (27) and (30) into (16):

(a) (b)

Figure 3. The variance LN
2 ( )σ  for the square lattice using superdisk windows 

obtained by the Monte Carlo calculations. (a) A plot of LN
2 ( )σ  versus L for the 

cases of p 1, 16 = . Note that the variance is divided by the characteristic length 
L. The inset is a magnification of the larger panel to show the case of p  =  1, which 
is otherwise not visible in the larger panel. (b) A semi-log plot of power exponent 

γ of L L LN
2 ( )  ( → )σ ∼ ∞γ  versus the deformation parameter p. To compute the 

exponent γ, we applied a linear regression to the log–log plot of LN
2 ( )σ , which was 

obtained by the Monte Carlo method up to L  =  70. The three inset figures show 
superdisks for certain deformation parameters.

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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L g L L g L2 2 2 2 ,N
2 2( ) ( )( ( ) ( ))σ = + (35)

where the function g x( ) is defined as

g x x x1 ,( ) { }( { })≡ − (36)
and x{ } represents the fractional part of a positive real number x. The cumulative mov-
ing average of (35) is

L L O L L
4

9
.N

2 2( ) ( ) ( → )σ ≈ + ∞ (37)

Thus, as the parameter p continuously increases from 1 to ∞, the growth rate of the 
variance will vary from L to L2, i.e.

L L L ,N
2 ( )  ( → )σ ∼ ∞γ (38)

where γ increases from 1 to 2 (see figure 3(b)). This demonstrates that hyperuni-
form systems may exhibit anomalously large long-wavelength density fluctuations for 
aspherical windows, which is inconsistent with the ‘spherical-window’ hyperuniformity 
condition (4).

4. Square-window variance for periodic point configurations

In this section, we investigate the eect of the window orientations on the growth 
rate of the variance for the square lattice, 2Z . We use square windows because this 
shape is amenable to exact analysis for some quantities as well as is one limit of 

superdisk (p →∞). For this purpose, we denote by L;N
2 ( )σ θ  the variance for 2Z  using 

square windows that have side length 2L and is rotated counterclockwise by an 
angle θ with respect to the lattice. Here, it is sucient to consider 0, 4[ / )θ π∈  due 
to 4-fold rotational symmetry and parity inversion symmetry of both the window 
and the lattice. We identify two classes of angles, rational and irrational angles, 

according to the asymptotic behavior of L;N
2 ( )σ θ . For rational angles, we derive the 

exact expression for L;N
2 ( )σ θ  and its asymptotic expression, and then compared these 

expressions with the Monte Carlo calculations. For irrational angles, we compute 

the exact values for L;N
2 ( )σ θ  and conjecture its asymptotic behavior at a special set 

of irrational angles.

We obtain expressions of L;N
2 ( )σ θ  in both direct and Fourier space representations. 

Using (27) and (30), the direct-space formula (16) yields

nL L L R L; 2 1 4 ; ,
n

N
T

0

2 2 2
2

2

( ) ( ) ( )
\

⎡

⎣
⎢

⎤

⎦
⎥∑σ θ α= − +

∈Z
 (39)

where r L;2( )α  is given in (30) and the rotation matrix R is

R cos sin
sin cos

.⎜ ⎟
⎛
⎝

⎞
⎠

θ θ
θ θ

= −
 (40)

The summation in (39) can be written as
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( ) ( )
( ) ( )

( )

( ) ( ) ( )( ( ) ) ( )
\

( )

Z

⎜ ⎟

⎡
⎣⎢

⎛
⎝
⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎤
⎦⎥

∑ ∑α
θ θ

θ θ

= − + −
+ − + +

+ + + + − − + −

θ π π

∈ =
nR L n n

n n j

L

j n n
L

n n n n n n j
L

; 4 1 1
sin 2 sin

2 2

cos 2

8

1

6
2 1

sin 2

8
,

n

T

j

M L

0

2

0

,

2 1

2 1 4 4

1 2 2 1 2 2 1 2 1
2

2

d

 

(41)

where M L L, 2 2 cos 4( ) ⌊ ( / )⌋θ π θ= − , n1 and n2 are abbreviations of n j1( ) and n j2( ), 
which are defined as

n j j j Lmax tan 1, cot 2 sec1( ) {⌈ ⌉ ⌈ ( )⌉}θ θ θ= + − (42)

n j j L jmin cot , tan 2 csc ,2( ) {⌊ ⌋ ⌊ ( )⌋}θ θ θ= − (43)

where x⌊ ⌋ means the largest integer less than or equal to x, and x⌈ ⌉ is the smallest inte-
ger larger than or equal to x.

The Fourier-space formula (17) yields

( ) ( ) ˜ ( )⎜ ⎟
⎛
⎝

⎞
⎠ ∫σ θ
π

α= k k kL
L

S L; ; dN

d
2

2 (44)

n

n

R L

R

1 sin 2
,

n i

T
i

T
i0

4
1

2 2

2
2

( [ ] )
[ ]\

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∏π

π
=

∈ =Z
 (45)

where R is the rotation matrix given by (40), and x i[ ]  denotes the component of a vec-
tor x along the ith principal axes of the square window.

4.1. Rational angles

An angle θ is called a rational angle if its tangent is a rational number, i.e.

tan .θ∈Q (46)
In fact, the definition of rational angles can vary with the lattice and window (see 
appendix A). For a rational angle n mtan 1( / )θ = − , where n and m are coprime integers, 
we can express the positions of Bragg peaks in (45) as those of the square lattice of lat-
tice constant L0 with L0 basis points:

iL k jL k i j k L 0cos , sin , , 1, 2, , ,0 0
2

0{(   ) ( )   } \θ θΛ = + + | ∈ =∗ �Z (47)

where L n m0
2 2= + . Substituting (47) into (45), we obtain the expression for the 

variance

L
i x x

i x L

j y x

j y L

x

L
;

sin 2 sin 2 16
N

k

L

i

k

k
j

k

k
2

1

2

2 2
0
2

2

2 2
0
2

4

0
4

0
2

( ) ( ( ) )
( )

( ( ) )
( )

( )

( )

( )

( )

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑ ∑ ∑σ θ

π
π

π
π

=
+

+
+

+
−

= =−∞

∞

=−∞

∞

 

(48)

∑= + +
=

−g x

L
x g x

L
B x x B x y

2
8 2

1
, , ,

k

L
k k

0
4

2

0
4

1

10
2

( ) ( ( )) ( ) ( )( ) ( )
 (49)
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where x  =  L0L, x nk Lk
0
2{ / }( ) = , y mk Lk

0
2{ / }( ) = , x{ } is the fractional part of a real  number 

x, g x( ) is defined by (36), and

B x y
i y x

i y

y y x y y x x

,
sin 2

csc sin 2 sin sin 2 2 1 2 .

i

2

2 2

2 2

( ) ( ( ) )
( )

( )( ( ⌊ ⌋) ( ) ( ( ⌊ ⌋ )){ })

∑
π

π

π π π π

≡
+
+

= + +
=−∞

∞

 (50)

Note that the closed-form expression for B x y,( ) in (50) is valid when y∈Q, and this 

expression is equivalent to piecewise linear interpolation of y yxcsc sin 22 2( ) ( )π π  whose data 
points are at x  =  i/2 for every integer i. A proof of (50) is given in our supplementary data 
(stacks.iop.org/JSTAT/2017/013402/mmedia) by using equation (1) therein. At 0θ = , 
(49) becomes equal to (35). We note that relation (35) was presented in [55], and relation 
(49) was derived by Rosen [56] for rectangular windows using a dierent approach. Their 
derivations, however, highly relies on the geometry of the lattice and the window, and 
thus they are dicult to generalize to other lattices and other window shapes. On the 
other hand, it is straightforward to generalize the formula (44) to other lattices and other 
window shapes (see appendix A). Furthermore, relation (48) provides a useful insight to 
explain the origin of the anomalously large density fluctuations (see figure 8(a)).

Now, let us examine properties of L;N
2 ( )σ θ  at rational angles. At first, L;N

2 ( )σ θ  van-
ishes whenever side length of a square window is an integer multiple of L0, i.e. 2L  =  nL0. 
This arises because under this condition, the lengths of the square along the principal 
axes of the lattice are integers, and thus the number of lattice points inside the win-
dow does not change while translating the window. Figure 4 clearly demonstrates that 

L; tan 1 100N
2 1( ( / ))σ −  vanishes at every L n n10001 2 50/= ≈  for an integer n. Secondly, 

L;N
2 ( )σ θ  grows like the window area, L2. More precisely, using the fact that B x y,( ) is a 

periodic function of x, L;N
2 ( )σ θ  is computed as

L
L

L

L

L
H n m;

4

9

2

3

16

45

1

4
,N

2
2

0
2

0
3

( ) ( )σ θ ≈ − + + (51)

 ( )∼ →∞
L

L
L

4

9
,

2

0
2 (52)

where H n m,( ) is the constant term of the summation in (49):

( ) ( ) ( )( ) ( )∑ π π=
=

−

H n m
L

x y,
1

csc csc .
k

L
k k

0
4

1

1
2 2

0

 (53)

Figure 5 depicts L;N
2 ( )σ θ  computed via the Monte Carlo method at various rational 

angles, and they are in a good agreement with the corresponding asymptotic expres-
sion (51). Note that asymptotic result (51) is inconsistent with the spherical-window 
condition (4), which may lead one to falsely conclude that the square lattice is non-
hyperuniform. Similar phenomena also have been observed in models of two-phase 
heterogeneous media, e.g. the checkerboard pattern and the square lattice decorated by 
identical squares [36, 37]. Specifically, even though these periodic heterogeneous media 
are hyperuniform by the Fourier-space condition (5), the resulting volume-fraction 

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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Figure 5. A log–log scale plot of N
2σ  for the square lattice via square windows at 

rational angles. All results are computed by the Monte Carlo method, except for 
two cases, tan 1 100, 1 200/   /θ = , which are calculated from the exact expression (49) 
due to the enormously large required system size. L;N

2 ( )σ θ  at rational angles are 

collapsed into a single scaling function, L L
4

9 0
2( / ) .

Figure 4. A plot of L;N
2

0( )σ θ  versus L, where tan 1 1000
1( / )θ = − . It shows a typical 

behavior of variance at rational angles. Top panel shows the comparison between 

N
2σ  and its asymptote (51). The bottom panel is a magnification of the yellow-

boxed region in the top panel. It demonstrates that the exact result by (49) is 
consistent with the Monte Carlo calculations.
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variance decays in an anomalous fashion, i.e. L Llim 2 0L V
2 2( ) ( )→ σ ≠∞ . Such anomalously 

large density fluctuations for hyperuniform systems were not predicted or noticed in 
previous theoretical works concerning hyperuniformity.

How do such anomalously large density fluctuations arise in what are hyperuni-
form systems? We can provide two answers to this question: the first is geometri-
cally based and the second is analytically based. For the sake of simplicity, we will 
assume 0θ = . Generally speaking, anomalously large density fluctuations arise when 
density fluctuations on the boundary of a window are correlated. Specifically, for a 
square  window, a single line of lattice points near the boundary of the window can fall 
 alternately in and out of the window as the window moves around the lattice with a 
fixed orientation (see figures 6(a) and (b)). Thus, the resulting number variance is pro-
portional to the square of the window perimeter in large-L limit, i.e.

L

a

L

a
L

; 0

; 0
.N

N

2

2

2( )
( )

 ( → )⎜ ⎟
⎛
⎝

⎞
⎠

σ
σ

∼ ∞ (54)

Roughly speaking, if the window surface (perimeter if d  =  2) has higher curvature on 
average or is closer to the spherical (circular) shape, then density fluctuations on the 
window surface are less correlated so that the growth rate of the variance becomes 
slower, as shown in figure 3(b). Essentially, such correlations of density fluctuations 
on the window surface can be demonstrated in the form of ‘resonance’ between 
˜ ( )α k L;2  and kS ( ) in the Fourier space, as shown in figure 8(a). For the same reason, in  
d-dimensional space, the variance for the hypercubic lattice dZ  via a hypercubic window 
of side length 2L asymptotically grow like square of the window surface area in the 
large-L limit (see appendix B):

L
d

d
L; 0

6 2 1
2 .N

d2 2 1( )
( )

( ) ( )σ ≈
−

−
 (55)

Here, the coecient d comes from the number of faces of a d-dimensional hypercube.

(a) (b) (c)

Figure 6. Correlation of density fluctuations for 2Z  lattice points on the perimeter 
of the square window. (a) 0θ =  and 2L  =  8.5, (b) tan 3 4/θ =  and L L n m2 40.5 ,0/ ( )= , 
and (c) tan 1 2/θ =  and L  =  7.5. When the leftmost window moves toward the 
right upper side, the blue points fall in the window, but the red points fall out 
of it. As shown in (a) and (b), at rational angles, lines of blue points can fall in 
the window at the same time. However, in the case of irrational angles (c), such a 
correlation of the fluctuations does not happen because any line of lattice points 
cannot be parallel to a side of the window.
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Another way to explain anomalously large density fluctuations involves noting the 

conditional convergence of the second moment of total correlation function, r rx h d( )∫  

(it becomes dth moment in d-dimensional space). Using the analysis in (22) which was 
done by Torquato et al [1], one can asymptotically expand r L;2( )α  in (39) in terms of L:

L L A L
B L

L
; 0 2 ,N

2 2
square

square( ) ( ) ( )
( )⎡

⎣⎢
⎤
⎦⎥σ ≈ + (56)

where

r rA L h1 d ,
x y L

square
, 2

( ) ( )∫= +
< (57)

r rB L x h d .
x y L

square
, 2

( ) ( )∫= −
< (58)

Note that the integrand rx h( ) in (58) is dierent from that in (24), r rh( ). The area 
integral in (57) becomes an infinite sum, and its Abelian sum converges to  −1, i.e.

⎡

⎣
⎢

⎤

⎦
⎥

R∫ ∑ π
β

= − = −
β

β

→ =

∞
−

+
r rh Zd lim e 1,

k

k
r

0 1

k

2

2( ) (59)

where Zk stands for the coordination number of kth shell of the square lattice, and rk is 
the radius of kth shell. Thus, A Lsquare( ) converges to 0 as L tends to infinity in the sense of 
Abelian mean. On the other hand, the second moment of total correlation function, given 
by (58), does not converge even in Abelian sum, but asymptotic behavior of its Abelian 
sum is 0.5β−  (see figure C1). This implies that B L Lsquare( )∼  by the dimensional analysis of 
(C.9). On the other hand, the Abelian sum of the counterpart of (58) for circular windows 
of radius R converges in the large-R limit [1]. More details are provided in appendix C.

4.2. Irrational angles

For a square window and the square lattice, we define an irrational angle θ to be one 
that satisfies the condition tan \θ∈R Q, where \R Q stands for the set of all irrational 
numbers. Estimating the local number variance at irrational angles is intimately related 
to the concept of the Diophantine approximation in number theory and discrepancy 
theory in discrete mathematics [35, 44]. For a given window shape (usually a rectangu-
lar box of arbitrary aspect ratios) and a finite point configuration in the unit hypercube 
in dR , the discrepancy is the largest dierence between the window volume multiplied 
by the total number of points and the number of points within the window. Generating 
configurations of N points with the lowest discrepancy is a problem of central concern.

Currently, a general theory to analytically deal with number variances for square 
or rectangular windows at all irrational angles has yet to be developed. Thus, previ-
ous works have been mainly restricted to certain types of irrational angles whose 
slopes have bounded partial quotients, so-called ‘badly approximable numbers’ (see 
our supplementary data (stacks.iop.org/JSTAT/2017/013402/mmedia)), e.g. Fibonacci 
lattice [57]. Beck [35] studied that the variance for the square lattice with rectangular 
strips that have a fixed width and is tilted by an irrational angle whose slope belongs 

http://dx.doi.org/10.1088/1742-5468/aa4f9d
http://stacks.iop.org/JSTAT/2017/013402/mmedia
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to the badly approximable numbers. Interestingly, one can generate a large class of one-
dimensional quasicrystals by projecting the square lattice points within an infinitely 
long rectangular strip tilted by an irrational angle onto the long axis of the strip [58, 
59]. Thus, the variance for the square lattice via a long rectangular strip tilted by some 
irrational angles is closely related to the variance for one-dimensional quasicrystals.

We use (39) to compute L;N
2 ( )σ θ  at irrational angles. Comparing figure 4 with 

figure 7, one can see that the variance at irrational angles generally has much smaller 

magnitude than the variance at rational angles. Furthermore, L; tan 1 2N
2 1( )( )/σ −  

exhibits a logarithmic asymptotic behavior, which is similar to that for rectangular 
strips at certain types of irrational angles, i.e. quadratic irrational numbers [35]. This 
asymptotic behavior of the variance is anomalously small in the sense that it is slower 
than the window perimeter, L.

Fourier space also provides a clear way to understand the anomalously small den-
sity fluctuations for irrational angles. Figure 8 illustrates two dierent terms, kS ( ) and 

k L;2˜ ( )α , in the Fourier representation (17) of N
2σ . For simplicity, we choose L  =  1. If 

L increases (not shown in the figure), the peaks of α k L;2˜ ( ) that lie along the principal 
axes become narrower in their widths, and larger in their intensities. As can be seen in 
figure 8(a), at rational angles, some Bragg peaks always lie along the principal axes of 
˜ ( )α =k L; 12 . Then, at certain values of L, the peaks of ˜ ( )α k L;2  on the principal axes are 

coincident with those Bragg peaks, resulting in L2 growth of N
2σ . At irrational angles, 

on the other hand, there are no Bragg peaks on the principal axes of ˜ ( )α k L;2 , as shown 
in figure 8(b). Instead, the major contribution to the variance comes from Bragg peaks 
which are close to the principal axes of ˜ ( )α k L;2 . For those Bragg peaks, corre sponding 

Figure 7. Semi-log plot of L;N
2

0( )σ θ  versus L, where tan 1 20
1( )/θ = − . Top panel 

shows N
2σ  obtained from the exact expression (39), and the cumulative moving 

average N
2σ , which was computed by the trapezoidal rule. The red dashed line 

is a curve fit of L;N
2

0( )σ θ  with the natural logarithm function. The bottom panel 

is a magnification of a part of the top panel. Note that the bottom panel shows 
good agreement between the Monte Carlo calculations (red squares) and exact 
calculations (black line).

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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indices (i,j) are the denominator and the numerator n m,k k( ) of convergents of tan θ (see 
our supplementary data (stacks.iop.org/JSTAT/2017/013402/mmedia)). For this rea-

son, it is expected that the asymptotic behavior of L;N
2 ( )σ θ  for irrational angles largely 

depends on the distribution of partial quotients ak, which are mainly concerned in the 
Diophantine approximation in number theory. Furthermore, the variance at irrational 
angles is unusually small.

In terms of rational approximation, irrational numbers can be classified into two 
sets. One is called ‘badly approximable numbers’, including n and the golden ratio φ. 
Roughly speaking, a badly approximable number x cannot have an excellent rational 
representation in the sense that any rational approximation n/m of x approaches to x 
at most in the order of 1/m2. Thus, if tan θ belongs to this set, then the Bragg peaks 
of the square lattice cannot be closer to the principal axes of ˜ ( )α k L;2  than a certain 
amount, leading to a smaller variance compared to those at irrational angles, which do 
not belong to badly approximable numbers. The top panel in figure 9 shows the cumu-
lative moving averages of the variance at some badly approximable slopes. Note that 

L; tanN
2 1( ( ))σ φ−  is smallest, where φ is the golden ratio, an extreme example of a badly 

approximable number. The logarithmic growth rate of LN
2 ( )σ  was also predicted in the 

case of rectangular strips at angles whose slopes are quadratic irrational numbers [35], 
which are also ‘badly approximable numbers’. The bottom panel in figure 9 shows the 

asymptotic behaviors of L;N
2 ( )σ θ  at some irrational slopes which are not badly approx-

imable numbers. For these angles, their asymptotic behaviors are rather unclear.

In addition, the dierence in the asymptotic behaviors of L;N
2 ( )σ θ  at rational and 

irrational angles is one of many physical examples [38–43] at which the (in)commensu-
rability of a certain parameter plays an critical role in physical properties.

-5 0 5
(a) (b)
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Figure 8. Visualization of the superposition of two functions kS ( ) and α k L;2˜ ( ) 
that appear in the Fourier-space representation of L;N

2 ( )σ θ  as given by (44), when 
L  =  1. x and y axes of both panels are k 2x / π and k 2y / π, respectively. The left and 
right panels show the cases of a rational and irrational angles, respectively. The 
white dots represent the Bragg peaks that are located on the sites of a square 
lattice, i.e. the structure factor kS ( ). The function ˜ ( )α k L;2 , given by the formula 
(32), is depicted as a contour plot in log scale for vivid visualization purposes. The 
variance via (45) is equivalent to the summation of ˜ ( )α k L;2  at each Bragg peak.

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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Remarks. 

 (i) There are two numerical issues in computing L;N
2 ( )σ θ  at irrational angles with (39). 

One is a huge round-o error. Relation (39) involves the subtraction of two terms 

on the order of L2 4( )  to obtain a value on the order of unity. Thus, a round-o error 

in L;N
2 ( )σ θ  for L 2000�  is estimated as 10% even if we fully exploit  double-precision. 

For this reason, we employ quadruple-precision to compute L;N
2 ( )σ θ .

Figure 9. Cumulative moving average L;N
2 ( )σ θ , versus log-scaled L at various 

irrational angles. Results are calculated from the exact expression (39). The top 
panel shows the cases in which the slopes tan θ are badly approximable numbers. 
The bottom panel shows the cases for tan θ whose partial quotients are unbounded.

Figure 10. The variance L;N
2 ( )σ θ  for square windows with fixed orientations in 

various ranges of L calculated by the exact expression (39). The angle θ between 
the lattice and the window is written as ctan k

1( )θ = − , where ck stands for kth 

convergent of the golden ratio φ, defined in our supplementary data (stacks.iop.org/

JSTAT/2017/013402/mmedia). c37 and c75 correspond to rational approximations 
of φ up to the double and quadruple-precisions, respectively; see table S.A given 
in our supplementary data.

http://dx.doi.org/10.1088/1742-5468/aa4f9d
http://stacks.iop.org/JSTAT/2017/013402/mmedia
http://stacks.iop.org/JSTAT/2017/013402/mmedia
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 (ii) Another numerical issue is the inevitable rational approximation in an irrational 
angle while computing the variance at the irrational angle. This implies that the 
numerically computed variances inevitably grow like L2 for large L. Then, it is 
a natural question to ask: To what extent are the numerical calculations of (39) 
suciently reliable to obtain the exact variance at irrational angles? A qualita-
tive answer is that for two distinct angles, the dierence in variance at these 
angles is negligible up to a certain window size L tanmax( ( ))θ∆ , which is certainly 
a decreasing function of tan( )θ∆ , as shown in figure 10. This is because (39) is a 
finite summation of continuous functions of θ within a range between n i1( ) and 
n i2( ), given by (42) and (43), also determined by continuous functions of θ.

5. Variance for disordered hyperuniform point processes

Throughout this section, we solely consider a d-dimensional convex unit window ω of 
a general shape in dR  and its scalar multiplication aω, where a is a positive real num-
ber. Here, the largest distance from the centroid of ω to the boundary is the unity: 

xmax 1x =ω∈ . The window indicator function can be written as

x R x
x

w w a
a

; ; ,
1,

0, otherwise.
( ) ( ) /⎧

⎨
⎩

ω
ω

= =
∈

 (60)

For brevity, we abbreviate the parameter set R, which characterizes the window shape 

and orientation, to a single length-scale parameter a, e.g. RN
2 ( )σ  to ( )σ aN

2 , and Rv1( ) 
to v a1( ). Then, we obtain a general expression for the asymptotic behavior of aN

2 ( )σ  for 

disordered hyperuniform point processes. In what follows, we prove that for any convex 
window, the variance for a disordered hyperuniform point process has the common scal-
ing relation, which is identical to (25). Then, we present some example calculations for 
two isotropic disordered hyperuniform systems.

5.1. Analysis

Consider statistically homogeneous and isotropic hyperuniform point processes at num-
ber density ρ in dR . Then, the vector-dependent total correlation function becomes a 

radial function h r( ), where = rr . Taking advantage of the rotational symmetry, we 
can rewrite (16) for a general window shape, using the orienatationally-averaged scaled 

intersection volume function ( )α r a; O2 :

ra v a h r r a1 ; d ,N O
2

1 2
d

( ) ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥∫σ ρ ρ α= +

R
 (61)

where r a; O2( )α  is the average of r a;2( )α  over all possible orientations of r with  
fixed r.

To compute the large-a asymptotic behavior of aN
2 ( )σ , we need to find an expres-

sion for ( )α r a; O2  for a window aω. Generally, it is extremely dicult to find a closed 

http://dx.doi.org/10.1088/1742-5468/aa4f9d


Eect of window shape on the detection of hyperuniformity via the local number variance

23doi:10.1088/1742-5468/aa4f9d

J. S
tat. M

ech. (2017) 013402

expression for r a;2( )α  of an arbitrarily shaped window. For small displacements 

�r a, however, one can approximate it up to the first order in r. Since r a;2( )α  is not 
dierentiable at r 0= , we cannot apply the multivariable Taylor theorem to ( )α r a;2 , 
or equivalently ( )rv a;2

int  immediately. Instead, we apply the Taylor theorem to ( )rv a;2
int  

around ˆεr and obtain a one-sided limit of the expansion as ε→ +0  in the following way:

⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥
⎥

ε
ε

ε
ε

∑= +
∂
∂

− +

= − +

′

′α α
α

→ = =

⊥

′
+

�r r
r

r

r r r

v v
v

r
r

v a A a O

lim 1

; ,

r r

d

2
int

0
2
int

1

2
int

1
3

( ) ( ˆ) ( )

( ) ( ˆ ) ( )
ˆ 

(62)

where rv2
int( ) is an abbreviation for rv a;2

int( ), defined in (18), and r̂ is the unit vector of 
r. Here, the first order coecient rA a;( ˆ )⊥  is defined as

∮( ˆ ) ( ˆ ) ˆ
( )

ε
ε
≡ − ⋅

ω
⊥

→ ∂+
r x r s rA a w a; lim ; d ,

a0
 (63)

where sd  represents the infinitesimal surface area element whose direction is normal to 
the surface and a( )ω∂  stands for the boundary of the window aω. Geometrically, rA a;( ˆ )⊥  
is the projected area of the window on a hyperplane normal to the displacement vector 
r. The second-order Taylor coecient of (62) is written as

ˆ
ˆ( ) [ ( ) ˆ]

ε
εε ε∫

−
−ω ω→ ∂ ∩ ∂ −+

x r

x r
slim d .

ra a0
 (64)

Note that since sd  in (64) is normal to r, the second-order term in (62) is identically 
zero. Then,

r
r r

ra
v a

v a

A a

v a
;

;
1

;
.2

2
int

1 1

( ) ( )
( )

( ˆ )
( )

α ≡ ≈ − ⊥
 (65)

Using the well-known average-projected-area theorem for convex bodies (see [60]), 
we obtain the expression for the orientational-average of the scaled intersection volume:

α κ≈ − = −⊥ r
r a

A a

v a
r d

s

v

r

a
; 1

;
1

1

1
,O

O
2

1

1

1

( )
( ˆ )

( )
( ) ( )

( ) (66)

where s a1( ) is the surface area of a window aω and rA a; O( ˆ )⊥  stands for the orienta-
tional-average of rA a;( ˆ )⊥ :

r r rA a A a;
1

; d ,O
d
∮( ˆ ) ( ˆ ) ˆ=

Ω
⊥ ⊥ (67)

where d d

2

2

d 2

( / )

/
Ω = π

Γ
 stands for the surface area of the d-dimensional unit sphere. Here, 

d( )κ  is the constant depending only on spatial dimension d [60]:

d
d

d

2

2 1 2 1 2
.( ) ( / )

( / ) (( )/ )
κ =

Γ
Γ Γ + (68)

Using approximation (66) and the analogous analysis in (22), we obtain
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∫
σ

ρ κ≈− →∞
<

r
a

s a
d h r r ad .N

r a

2

1

2( )
( )

( ) ( )   ( ) (69)

Note that the right-hand side of (69) is independent of the window shape, thus implying 

that the asymptotic behavior of aN
2 ( )σ  is independent of the window shape.

5.2. Example calculations

To demonstrate the implications of (69), we study two disorderd hyperuniform point 
processes in 2R : one is one-component plasma (OCP) [1, 13] and the other is two- 
dimensional g2-step-function point process [1]. OCP is a system consisting of point par-
ticles of charge e and uniform background charge satisfying overall charge neutrality. 
In the thermodynamic limit, when the coupling constant is e kT 22/( )Γ≡ = , the total 
correlation function is given by [14]

h r e .r 2( ) = − ρπ− (70)

Its structure factor [1] is

S k k k 0 .2( )  ( → )∼ (71)
We also consider a g2-invariant point process defined by the following pair correlation 
function

g r r D ,2( ) ( )= Θ − (72)
where D is diameter of hard spheres. A g2-invariant process is one in which a chosen non-
negative g r2( ) function remains invariant over a non-vanishing density range without 
changing all other macroscopic variables [61, 62]. This system, so called g2-step-function 

point process, turns out to be hyperuniform at the ‘terminal’ density D2 1( )ρ π= −  [1].

Figure 11. The exact scaled variance a s aN
2

1( )/ ( )σ  for 2D disordered hyperuniform 
point processes for both circular and square windows as a function of a. Here, 
a  =  R and a  =  L for circular and square windows, respectively, and s a1( ) denotes 
the window perimeter. (a) g2-step-function point process at 1ρ =  and D 1/ π=  

and (b) one-component plasma at 1ρ =  are presented. We can see that σ a sN
2

1( )/  
converges to the same value as the perimeter of a window increases for each case, 
as shown by (69).

http://dx.doi.org/10.1088/1742-5468/aa4f9d


Eect of window shape on the detection of hyperuniformity via the local number variance

25doi:10.1088/1742-5468/aa4f9d

J. S
tat. M

ech. (2017) 013402

Since the exact expression for g r2( ) for both aforementioned point processes are 
given, one can compute their variance for both square and circular windows. Figure 11 
clearly shows that both OCP and hyperuniform g2-step-function point process at the 
unit density have common scaling relations for circular and square windows. It is 
a noteworthy fact that spherical windows measure the minimal asymptotic variance 
among all convex windows of the same volume. This is because the variance is propor-
tional to the window surface area due to (69) and spheres have the smallest surface-to-
volume ratio among convex bodies (see Isoperimetric problems).

6. Orientationally-averaged number variance

In the previous section, we proved that for statistically homogeneous and isotropic 

point processes, the asymptotic behavior of the scaled variance a s aN
2

1( )/ ( )σ  is indepen-
dent of the window shape (see (69)), if windows are convex. On the other hand, for 
anisotropic hyperuniform systems, including disordered ones and lattices, the growth 
rate of variance depends on both the shape and the orientation of windows, as we 
shown in sections 3 and 4. Thus, the isotropy plays an important role in making 
such a dierence in the asymptotic behavior. In this section, we define orientationally- 
averaged local number variance and study its asymptotic behavior.

Consider statistically homogeneous but anisotropic hyperuniform point processes in 
dR . Then, we can re-interpret the variance formula (61) for aspherical windows as the 

orientationally-averaged one. This is because there are implicitly two dierent orienta-
tions in the scaled intersection volume r a;2( )α  of a window aω: one is the orientation 
of the displacement vector r and the other is that of windows. Thus, r a; O2( )α  also 
implies the average of r a;2( )α  over the orientations of windows with the displacement 
vector r fixed. For the purposes of illustration, consider the explicit expression (73) for 
square windows of side length 2L and its scaled intersection volume r L;2( )α . The right-

most side of the first line of (73) schematically represents the definition of r a; O2( )α  as 
the average of r L;2( )α  (shaded regions) over all orientations of r (red arrows) with the 
orientations of windows fixed. Rotating pairs of windows in the first line in the manner 
that the orientations of displacement vectors (red arrows) are identical, as shown in the 
second line of (73), yields the average of r L;2( )α  over all orientations of square windows 
with a common displacement vector r.

^̂̂

 

(73)

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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where x
r

L2
=  [48]. Note that the argument made in (73) is valid for any d-dimensional 

aspherical windows. Thus, for anisotropic point processes, the expression

r ra v a h r a1 ; dN O O
2

1 2
d

( ) ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥∫σ ρ α≡ +

R
 (74)

represents the orientationally-averaged variance for windows aω. Since (74) is the same 
as (61), one can conclude that any hyperuniform point process will satisfy the following 
relation

r r r
a

s a
d h ad .

r

N O

a

2

1

2
( )

( )
( ) ( )  ( → )∫

σ
ρ κ≈− ∞

<
 (75)

This implies that orientationally-averaged variance aN O

2 ( )σ  of any hyperuniform point 

process will give the same scaling relation (25) for any convex window shape. Therefore, 
we conclude that for any convex window shape, the following hyperuniformity condi-
tions applies:

a

v a
lim 0,
a

N O

2

1

( )

( )→

σ
=

∞
 (76)

which is consistent with the spherical-window condition (4).
Now, we consider the orientationally-averaged variance, LN O

2 ( )σ  for the square 

lattice using square windows. In this case, (75) implies that

L

L

R

R
lim

8
lim

2
.

L

N O

R

N

2
2( ) ( )

→ →

σ σ
π

=
∞ ∞

 (77)

Kendall [34] proved the same result for square lattice and randomly oriented planar 
convex windows with non-vanishing curvatures, and derived the following:

R

R
Llim

2

1

2

3

2

3

2
, 3.6419 10 ,

R

N
2

3
2

( )
→

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

σ
π π

ζ χ= ≈ ×
∞

− (78)

where x( )ζ  is the Riemann zeta function and L x,( )χ  is the Dirichlet L-function, which 

is defined as L x n, 1 2 1n
n x

0( ) ( ) /( )χ ≡∑ − +=
∞ . Figure 12 clearly shows that L LN O

2 ( )σ ∼ , 

which also is consistent with Matérn’s observation [54], and from figure 12 we obtain

L

L
lim

8
3.642 0.0001 10 ,

L

N O

2

2
( )

( )
→

σ
= ± ×

∞

− (79)

which is in good agreement with (78).
This result gives a clue to the distribution of the asymptotic behaviors of L;N

2 ( )σ θ  
with respect to the angle θ. The orientationally-averaged variance is

L L
1

; d .N O N
2

2

2
2( ) ( )

/

/

∫σ
π

σ θ θ=
π

π

−
 (80)
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Here (80) may not be well-defined as a Riemann integral, because for a fixed L, the con-

tinuity of L;N
2 ( )σ θ  with respect to θ is unclear. Therefore, it is better to introduce the 

probabilistic integral to compute (80). Then, since the set of rational angles, tan 1( )− Q , 
have zero measure among all angles, rational angles do not make any contribution to 
the orientational-average of the variance, and thus

L L
1

; d
1

; d .N N
2

2
2

2, 2 tan

2

1
( ) ( )

/

/

[ / / )\ ( )∫ ∫π
σ θ θ

π
σ θ θ=

π

π

π π− − − Q
 (81)

In order for (81) to be consistent with the result (79), it is expected that L-growth 

rate for L;N
2 ( )σ θ  should exist for θ of non-zero measure subset of 2, 2 tan 1[ / / ) \ ( )π π− − Q . 

However, we have yet to observe linear growth rate and so it is an interesting problem 
in mathematics to identify an irrational angle at which the variance for the square 
windows asymptotically grows like the window perimeter.

7. Conclusions and discussion

We have studied the window-shape dependence on the large-window asymptotic behav-
ior of the local number variance of hyperuniform point processes to understand con-
ditions under which the growth rate of the variance is not slower than the window 
volume, conflicting with the spherical-window hyperuniformity condition (4). For this 
purpose, we computed the variance for several hyperuniform systems using aspherical 
windows with a fixed orientation with respect to the systems.

We demonstrated that for hyperuniform systems, the growth rate of the variance 
can depends on not only the window shape but also the window orientation. We begin 
with the numerical computation of the variance for the square lattice with superdisk 

Figure 12. Orientationally-averaged variance N
O

2σ  for the square lattice using 

randomly orientated square windows versus L. Inset: comparison between exact 

results (74) and the Monte Carlo calculations of the variance, N
O

2σ . In the Monte 

Carlo calculations, 300 000 windows, each of which has a random centeroid and a 

random orientation, are thrown.
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windows, and demonstrate that its asymptotic behavior varies with the window shape, 
i.e. the deformation parameter p. Importantly, as the window shape is closer to perfect 
squares (p →∞), the asymptotic behavior of the variance approaches to L2 (from L), 
which is inconsistent with ‘spherical-window’ condition (4).

Then, to better understand the conditions under which hyperuniform systems can 
have anomalously large variance growth in conflict with the spherical-window condi-
tion (4), we investigated the case of the square lattice and square windows (superdisk of 
p →∞). We identify two classes of angles of the square window with respect to the lat-
tice, at which the asymptotic behavior is dierent. At the rational angles, defined by (46), 
the variance for square lattice increases like the window volume. However, at the irratio-
nal angles, the variance is significantly smaller the variance via the spherical windows.

Based on the analysis for the square window and square lattice, we explained 
the origin of the inconsistency in the direct-space hyperuniformity conditions for 
spherical and aspherical windows in two aspects. One is the resonance between the 
structure factor kS ( ) and the Fourier transform of the scaled intersection volume,  
α k L;2˜ ( ) in the Fourier space (see figure 8). For the square lattice and square win-
dows, ‘rational angles’ are the angles at which the resonance occurs to cause the 
anomalously large variance growth. Subsequently, we extended the concept of ratio-
nal angles to the case of d-dimensional Bravais lattice and parallelepiped windows 
(see appendix A). We explicitly computed rational angles corresponding to square 
lattice and rectangular windows with a fixed aspect ratio, and the case of triangular 
lattice and square windows. Another explanation is the conditional convergence of 
the second moment of the total correlation function, denoted by B RlimR N ( )→∞  in 
(24). Using Abelian summability method (appendix C), we demonstrate that the 
improper integral, involved with B RlimR N ( )→∞ , is divergent for square boundaries 
while it is convergent for the circular one.

We proved that for statistically isotropic disordered hyperuniform systems, the 
 variance associated with aspherical convex windows exhibits the same asymptotic 
behavior as the variance for spherical windows. We verified this result for two  isotropic 
disordered hyperuniform point processes, i.e. one-component plasma and g2-step- 
function point process at the critical density.

We also suggest a new direct-space hyperuniformity condition that is independent 
of the window shape, i.e.

a

v a
lim 0,
a

N O

2

1

( )

( )→

σ
=

∞
 (82)

where aN O

2 ( )σ  represents the local number variance averaged over window orienta-

tions. This is consistent with the fact that for a planar convex window, LN O

2 ( )σ  of the 

square lattice is asymptotically bounded by the perimeter of the window [34, 52, 53]. 
We note that the same analysis and general conclusions directly extend to two-phase 

media because the formulas for RN
2 ( )σ  and RV

2 ( )σ  are essentially the same.
We have studied how to reduce the dependence of the variance on the window shape at 

large length scales. For future study, it will be interesting to investigate how to design the 
window shape and its orientation to maximize or minimize the variance for a given system 
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Eect of window shape on the detection of hyperuniformity via the local number variance

29doi:10.1088/1742-5468/aa4f9d

J. S
tat. M

ech. (2017) 013402

at short length scales. Minimizing the variance corresponds to finding the ground state 
of the repulsive pair potential defined by the scaled window intersection volume r R;2( )α  
[1]. The results of such studies may be used in the field of self-assembly. For instance, in 
the presence of depletants, the contact attraction is exerted between two cubic nano-shells 
due to the osmotic pressure [63]. Here, the attractive pair potential is proportional to the 

scaled intersection volume r L;2( )α ′ , given by (B.1) in d  =  3, where L L Rg= +′ , 2L is the 

side length of the cubic particle, and Rg is the gyration radius of a depletant.
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Note added in proof. We learned recently that in [66] the author presents a formula 
that is the same as (75) in the present article.

Appendix A. Generalizations of rational angles to other Bravais lattices and  
parallelepiped windows

In the case of the square lattice and square windows, we identify rational angles (section 
4.1) at which the growth rate of the variance is not slower than the window volume. 
The concept of rational angles (orientations in higher dimensions) can be extended to 
general Bravais lattices and parallelepiped windows in d-dimension. For this purpose, 
we will derive a Fourier space representation of the variance for Bravais lattices using 
parallelogram observation windows in two-dimensions, and then generalize the expres-
sion to higher dimensions. Denote by L( )Ω  a parallelogram window with a single length 
scale L, which is defined as

( )    R
⎧
⎨
⎩

⎫
⎬
⎭∑Ω ≡ = ∈ < =

=
x AL y y L i, for 1, 2 ,

i
i i i

1

2
2

 (A.1)

where A1 and A2 are linearly independent vectors in 2R . The window indicator function 
rw L;( ) of this parallelogram window is given by

( )   ( )
  ( ) ( )

⎧
⎨
⎩ ∏≡

∈Ω
= Θ − =
=

r
r

rw L
L

L y w M L;
1,

0, otherwise
; ,

i
i

1

2

0 (A.2)

where rw L,0( ) is the window indicator function of a two-dimensional square window 
that has side length 2L and is centered at the origin, and M is a linear operator that 
transforms the unit parallelogram 1( )Ω  into the unit square. In a matrix representation,

B

B
M ,

T

T

1

2

⎛

⎝
⎜

⎞

⎠
⎟= (A.3)

satisfying B A B Ai j i
T

j ijδ⋅ = =  for i,j  =  1,2, where ijδ  is the Kronecker delta symbol. 

The Fourier transform of the indicator function rw L,( ) can be written as:

http://dx.doi.org/10.1088/1742-5468/aa4f9d
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(A.4)

where r yM 1≡ − , and thus the Jacobian of the transformation from r to y, 
r r

y y

,

,

1 2

1 2

( )
( )
∂
∂

 is 

identical to the determinant of M−1. Then, (A.4) becomes

= =− − −k q kw L M w L M w M L; det ; det ; ,T1
0

1
0

1˜( ) ( ) ˜ ( ) ( ) ˜ (( ) ) (A.5)

where qw L;0˜ ( ) is the Fourier transform of the square window of side length 2L, and 

q kM T1( )= − . Using the convolution theorem, the Fourier transform of the scaled  

intersection volume function, α r L;2˜ ( ), can be expressed as

˜ ( ) ˜( ) / ( ) ( ) ˜ (( ) ) /( )α = Ω = − −k k kL w L L M w M L L; ; det ; 2 ,T
2

2 1
0

1
2

2 (A.6)

where L L M2 det2 1( ) ( ) ( )Ω = − . In terms of reciprocal vectors bi of lattice vectors ai, the 

structure factor is

k k nS v B2 2 ,
n

c

n n 0

2

,1 2
2

( ) ( ) / ( )
( ) \
∑π δ π= −

= ∈Z (A.7)

where b bB 1 2( )   = |  in a matrix representation, and the volume of the fundamental 

(unit) cell vc is equal to the inverse of the number density, i.e. v Bdet 1c
1( ) /ρ= =− .

Substituting (A.7) and (A.6) into (17), the variance can be written as

⎛
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⎠
⎟
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σ θ
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π
π

π
π

=
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=

=

−

−
∈ =

−

−

∈ =

k k k
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n

n
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S L

M

B
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P
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d ;

16
det

det

sin 2

2

det sin 2
,

n

n

N

i

T
i
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i
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0

0

2
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1 2

1 2
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2 1

1

2

2

4
1

2 2

2

2

2

( )
( )

( )
( ) ˜ ( )

( )

( )
( [( ) ] )

[( ) ]

( ) ( [ ] )
[ ]

\

\

 

(A.8)

where θ stands for the angle between two vectors A1 and a1, P M BT1( )= −  whose matrix 
element is

A bP ,ij i
T

j= (A.9)

and n A b bP n ni i
T

1 1 2 2[ ] ( )= +  for i  =  1,2. We define θ as a ‘rational angle’ for any two-
dimensional Bravais lattice and parallelogram windows if only one of nP 0i[ ] =  has a 

non-trivial integral solution n. Note that L;N
2 ( )σ θ  grows like L2 at such an angle θ, to 

be contrasted with the spherical-window condition (4). Straightforwardly, one general-
izes (A.8) to d-dimension as
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n

n
L P

P P L

P
;

det sin 2
,

n
N d

i

d
i

i0

2
2

2
1

2

d

( )
( ) ( [ ] )

[ ]\

⎛
⎝
⎜

⎞
⎠
⎟∑ ∏σ

π
π

=
∈ =Z

 (A.10)

and the window orientations with respect to the lattice is characterized by the d d×  
matrix P, defined in (A.9). We say that that the window is at a rational orientation if 
P has a non-trivial integral solution n 0d \∈Z  satisfying that a vector nP  has at least 
d/2 vanishing elements.

Remarks. 

 (i) For the square lattice and for the square windows is rotated by θ with respect to 
the lattice, M is the identity matrix, and B  =  RT, where R is given by (40). Then, 
we can recover (45).

 (ii) If both window and lattice are spanned by the same basis vectors and are aligned, 

i.e. 0θ =  and Pij ijδ= , then (A.8) becomes identical to L;N
2 ( )σ θ  of the square lat-

tice using a square window of side length 2L, given by (35), up to a proportional 
constant. However, if the lattice is rotated with respect to the window, then 
operator P, defined in (A.9), can be written as

P M RM ,T T1( )= −
 (A.11)

  where R is a rotation operator. Thus, P is a similarity transform of the rotation 
operator R in this case.

A.1. Square lattice and rectangular windows

The generalization to a rectangular window and the square lattice is straightforward. 
For a rectangular window, rotated by an angle θ, of two side lengths aL and bL,

P a
b

R0
0

,( )=
 (A.12)

and thus n nP a R1 1[ ] [ ]=  and n nP b R2 2[ ] [ ]= , where R is the rotation matrix, defined by 
defined by (40). Therefore, (A.8) becomes

n

n

n

n
L

R aL

R

R bL

R
;

1 sin 2 sin 2
.

n
N

0

2
4

1

1

2
2

2

2

2

( ) ( [ ] )
[ ]

( [ ] )
[ ]\

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
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⎟∑σ θ

π
π π

=
∈Z

 (A.13)

Note that (A.13) is similar to its counterpart to square windows (44). Thus, one can 
immediately notice that for the square lattice, rational angles for both rectangular and 
square windows are the same, and the variance at the rational angle is

L
ax

L
g bx

bx

L
g ax

g ax g bx

L L
B ax x B bx y;

2
2

2
2

2 2 1
, , ,N

k

L
k k2

2

0
4

2

0
4

0
4

0
4

1

10
2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )∑σ θ = + + +
=

−
 

(A.14)

where we use the same notations that we defined in (49). We note that (A.14) asymp-
totically increases like L2. The same result was derived by Rosen [56] using a dierent 
approach.
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A.2. Triangular lattice and square windows

Consider a triangular lattice of lattice constant a with whose number density 
a

2

3 2
ρ =  

and square windows of side length 2L. Let the lattice vectors be specified by

a aa a1 0 , 1 2 3 2 ,
T T

1 2( ) ( )      / /= = (A.15)

thus the corresponding reciprocal vectors are given by

b ba a1 1 3 , 0 2 3 .
T T

1
1

2
1( ) ( )/     /= − =− − (A.16)

For simplicity, consider that the principal axes of square windows are aligned along 
axes of Cartesian coordinates, and the lattice is rotated counterclockwise by θ−  with 
respect to the square window. Then, the matrix P, defined by (A.9), will be

b bP IB R
a

1
cos

1

3
sin

2

3
sin

sin
1

3
cos

2

3
cos

.T
1 2( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ θ θ

θ θ θ
= = =

−

− −
 (A.17)

Here, we can obtain two types of ‘rational angles’ in this case:

n n m m n ntan 3 2 , 2 3/( )  ( )/( )θ = − − (A.18)

for integers n and m. For a given rational angle θ, defined by (A.18), there are at most 
two pairs of coprime integers n n m,i i i( )=  for i  =  1,2:

m n m n1 3 tan 2, 1 3 cot 2.1 1 2 2( ) ( )/ /   / /θ θ= + = − (A.19)

Then, the relation between n1 and n2 can be obtained:

m n m n m n2 2 .2 2 1 1 1 1/ ( )/( )= − − (A.20)
Thus, we can define two length scales L L,1 2   at a given rational angle θ:

nL P
a

n n m m
2

3
,i i i i i i i

2 2[ ]≡ = − + (A.21)

for i  =  1,2, and these two length scales are related in the following way:

=
−

=L
n

m n
L L3

2
3 .2

2

1 1
1 1 (A.22)

If neither m2 and n2 is zero, m n21 1−  and m n2 1 1−  in (A.19) are coprime due to the 
working principle of Euclidean algorithm (see [64]). Because of the uniqueness of the 

irreducible fraction, = −n m n22 1 1  and m m n22 1 1= − , which leads the last equality 

in (A.22) to be valid. Table A1 lists some n1 and n2 pairs.
Then, we can find an approximation of (A.8) at rational angles:
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(A.23)

where an identity, g x x x n x n1 2 sinn 1
2( ) { }( { }) ( ( )/( ))π π≡ − = ∑ =

∞ , is used. Figure A1(a) 
shows that good agreement between the approximation (A.23) and the Monte Carlo 

calculations. The asymptotic behavior of L;N
2 ( )σ θ  of the approximation is given by 

(A.23):

Table A1. n1 and n2 pairs for rational angles in the triangular lattice and the 
square windows.

tan θ m1 n1 m2 n2 L1 L2

1 3 3( )/ 2 3 −4 1 /2 7 3 2 7

1 7 3( )/ 4 7 −10 1 2 37 3/ 2 37

11 9 3( )/ 10 9 −11 8 2 91 3/ 2 91

13 7 3( )/ 10 7 −4 13 2 79 3/ 2 79

17 3 3( )/ 10 3 4 17 2 79 3/ 2 79

Figure A1. The variance for the triangular lattice of the unit lattice constant 
using square windows. (a) The case of tan 1 27/θ = , i.e. m n, 2, 31 1( ) ( )= . This 
clearly demonstrates good agreement between the approximation (A.23) and the 

Monte Carlo calculations. (b) A log–log plot of cumulative moving average N
2σ  

versus L/L1 for various window orientations. Values are computed by the Monte 
Carlo method using 40 000 sampling windows with a fixed orientation. Here, the 
integer pairs in the legend represent m n,1 1( ) in table 1. These values collapse onto 
a single scaling function 32x2/81, i.e. (A.24) in the large-L limit.
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Figure A1(b) illustrates that the cumulative moving averages at five dierent angles 
collapse onto a single scaling function, as we saw in figure 5.

Appendix B. Generalizations of the expresion (35) to the higher dimensions

The generalizations of the variance for the square lattice using perfectly-aligned square 
windows, (35), to the higher dimensions are straightforward. In d-dimension, (30) 
becomes

r
r
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v L
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L r;

;

2
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2
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2
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⎞
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⎟∏α ≡ = − Θ −

=
 (B.1)

Using (B.1), the variance (39) can be readily generalized to the d-dimensional case:
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(B.2)

Its asymptotic expression, LN
2 ( )σ , is

L
d

d
L L; 0

6 2 1
2 .N

d2 2 1( )
( )

( )  ( → )( )σ ≈
−

∞−
 (B.3)

Figure B1. A semi-log plot of L; 0N
2 ( )σ  versus 2L for the first 4 dimensions. Graphs 

are obtained from the exact expression (B.2). Note that L; 0N
2 ( )σ  vanishes whenever 

2L is an integer.
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Note that the variance increases like the square of the window surface area, and the 
coecient d in (B.3) can be interpreted as the maximum number of faces in which 

density fluctuations can occur while the window moves. Figure B1 shows L; 0N
2 ( )σ  for 

hypercubic lattice for the first four dimensions.

Appendix C. Convergence of the second moment of total correlation function in 
two-dimensional space

There are several methods of summability methods to assign a finite value to an infinite 
sequence that is not convergent in the conventional sense. Here, we will briefly intro-
duce two summability methods, Cesàro and Abelian means, to explain the anomalously 

large density fluctuations of L; 0N
2 ( )σ  in (35).

C.1. Cesàro summability

For a given real-valued function f x( ) defined in R, its improper integral f x xd
0

( )∫
∞

 is 

called Cesàro summable or, equivalently, C ,( )α  summable to a real number I, if

x

t
f x x Ilim 1 d ,

t

t

0
( )

→
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⎛
⎝

⎞
⎠∫ − =
α

∞
 (C.1)

0α> . (C,0) summable is equivalent to the conventional convergence of the given 

improper integral f x xd
0

( )∫
∞

. (C,1) summability of the improper integral is the same as 

the convergence of the cumulative moving average of the integral [65]:
x
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 (C.2)

Using mathematical induction, one can easily show that for a natural number n, 

an improper integral ( )∫→∞ f x xlim dt

t

0
 is (C,n) summable to I, if and only if its nth  

multiple cumulative moving average converges to /I n! in the large-L limit:
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x x

0 0 0 0

n 1

( ) ( ) (C.3)

Note that for spherical windows of radius R, RN
2 ( )σ  for the square lattice is asymptoti-

cally linear in R in the large-R limit in the sense that [34]

R

r

r
rlim

1
d

R

R
N

1

2 ( )
→ ∫

σ
∞

 (C.4)

converges to the constant. Using the analysis in (22), one can express (C.4) as

R
r r r h rlim
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2 1 2 3 2
d d ,

R

R r

1 0

2

( / ) ( / )
( )
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−

Γ Γ
′ ′ ′

∞
 (C.5)

which implies that the 2nd moment of the total correlation function of the square  
lattice is (C,1) summable in the circular boundary.

http://dx.doi.org/10.1088/1742-5468/aa4f9d


Eect of window shape on the detection of hyperuniformity via the local number variance

36doi:10.1088/1742-5468/aa4f9d

J. S
tat. M

ech. (2017) 013402

C.2. Abelian summation

Suppose that , , ,0 1 2{ }λ λ λ λ= �  is a strictly increasing sequence approaching infinity, 
and 00λ > . The Abelian mean Aλ of a sequence c c c c, , ,0 1 2{ }= �  is defined as

( )β=λ
β→ +

A flim ,
0 (C.6)

where f c en n0
n( )β ≡∑ βλ

=
∞ − , and f ( )β  is assumed to be convergent for all real numbers 

0β> . Abelian summation of a sequence a is a special case of its Abelian mean in which 

nnλ = , and thus f c en n
n

0( )β = ∑ β
=
∞ − .

C.3. Conditional convergence of the integral involving the total correlation function

For the square lattice, the integrals of total correlation function, (23) and (57), oscillate 
but do not converge in the conventional sense. These integrals are summable via an 
Abelian sum, which turns out to be equivalent to the ‘convergence trick’ [1]. For both 

square and circular windows, the volume integral r rh d( )∫  can be written in the same 

form (see (59))

( ) ( )
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= = − = −
β
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−

→ =

∞
−

+ +
r r r rh h Zd lim e d lim e 1.r

k

k
r

0 0 1

k

2 2

2 2

 (C.7)

In the analysis leading to (22), the convergence of the second moment of total cor-

relation function rh( ) determines the asymptotic behavior of the variance N
2σ  in the 

limit of R →∞. In order to assign a finite value to (24) for a circular window, we use 
the Abelian sum again, yielding

( ) ( )
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(C.8)

Similarly, the Abelian sum of the second moment of total correlation function for a 
square window is given by:
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(C.9)

As we can see in figure C1, the second moment for a circular window (C.8) converges 
to a finite value, while that for square window (C.9) diverges.

Figure C1 shows the second moments of the total correlation functions for both 
circular and square windows. The second moment of rh( ) for circular windows (C.8) 
can be approximated by a straight line, and its y-interpolation gives the limit value 
(0.228 821), which is consistent with the value given in [1]. The second moment of rh( ) 
for square window (C.9) can be approximated by 0.3/ β, yielding the result

( )
R∫− ∼

β

β

→

−
+

r rx h Llim e d .r

0 2

2

 (C.10)
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