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Abstract.  Weyl–Heisenberg ensembles are a class of determinantal point 
processes associated with the Schrödinger representation of the Heisenberg 
group. Hyperuniformity characterizes a state of matter for which (scaled) 
density fluctuations diminish towards zero at the largest length scales. We will 
prove that Weyl–Heisenberg ensembles are hyperuniform. Weyl–Heisenberg 
ensembles include as a special case a multi-layer extension of the Ginibre 
ensemble modeling the distribution of electrons in higher Landau levels, which 
has recently been object of study in the realm of the Ginibre-type ensembles 
associated with polyanalytic functions. In addition, the family of Weyl–
Heisenberg ensembles includes new structurally anisotropic processes, where 
point-statistics depend on the dierent spatial directions, and thus provide a 
first means to study directional hyperuniformity.
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1.  Introduction

The characterization of density fluctuations in many-body systems is a problem of 
great interest in the physical, mathematical and biological sciences. A hyperuniform 
many-particle system is one in which density fluctuations are anomalously suppressed 
at long-wavelengths, compared to those occurring in the Poisson point process and 
typical correlated disordered point processes. The hyperuniformity concept provides 
a new way to classify crystals, certain quasiperiodic systems, and special disordered 
systems [1, 2]. A theory for understanding hyperuniformity in terms of the number 
variance of point processes has been developed in [1] and [3]. The theory characterizes 
hyperuniform point process in d-dimensions with the property that the variance in the 
number of points in an observation window of radius R grows at a rate slower than Rd, 
which is the growth rate for a Poisson point process.

It is known that some determinantal point processes are disordered and hyper-
uniform [4–8]. Weyl–Heisenberg Ensembles are a very general class of determinantal 
point processes on Rd, with d = 2m an even number. They are defined in terms of the 
Schrödinger representation of the Heisenberg group acting on a vector g ∈ L2(Rm). For 
choices of g in the Hermite function basis of L2(Rm), they reduce to extensions of the 
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two-dimensional one-component plasma and the Ginibre ensemble to higher Landau 
levels. In this paper, we will show that Weyl–Heisenberg ensembles are hyperuniform. 
Actually, a bit more is true: the variance of the number of points in an observation 
window of radius R grows at a rate proportional to Rd−1. This was already known to 
happen in the two-dimensional one-component plasma. Our results about the Weyl–
Heisenberg ensembles show that the same happens with the distribution of electrons 
when higher Landau levels are formed under strong magnetic fields. Higher Landau 
levels lead to the macroscopic eect known as the quantum-Hall eect [9, 10].

There are several ways of randomly distributing points on the Euclidean space. 
Under mild assumptions, a point process is completely specified by the countably infinite 
set of generic k-particle probability density functions, denoted by ρk(r1, ..., rk). These 
are proportional to the probability density of finding k particles in volume elements 
around the given positions (r1, ..., rk), irrespective of the remaining particles. More pre-
cisely, if X is a simple process defined on the Euclidean space—so that points do not 
have multiplicities, then ρk is characterized by the properties that (i) ρk(r1, ..., rk) = 0, 
whenever the positions of two of the points rj are equal, and (ii) for every family of 
disjoint measurable sets D1, . . . Dk,

E

[
k∏

j=1

X (Dj)

]
=

∫
∏

j Dj

ρk(r1, ..., rk)dr1 . . . drk,

where X (D) denotes the number of points to be found in D. For instance, Poisson 
processes distribute points randomly but in a completely uncorrelated way. Indeed, in 
this case, the k-particle probability density reduces to constants easy to compute. Since 
the single-particle density function can be obtained from the thermodynamical limit ρ, 
where V is the strength of the magnetic field and grows together with the number of 
points N:

ρ(r1) = lim
N,V→∞

N

V
= ρ,

the k-particle probability densities for Poisson processes are given by

ρk(r1, ..., rk) = ρk.

However, in several many-body systems and other physical models, one has to take into 
account particle-particle interactions, requiring more sophisticated probabilistic mod-
els. In studies of the statistical mechanics of point-like particles one is usually inter-
ested in a handful of quantities such as k-particle correlations. It is then of paramount 
importance to study point processes for which the properties of such correlations have 
convenient analytic descriptions as, for instance, in the so-called ghost random sequen-
tial addition processes [11]. But such exactly solvable models are not so common, lead-
ing to widespread use of Poisson processes instead of more sophisticated probability 
models, because simple analytic expressions for the k-particle correlations are avail-
able. Facing such a gap between the physical model and its mathematical description, 
one may be led to think that the possibility of using probabilistic models describing 
interacting particles, with k-particle correlations written in analytic form, is a hopeless 
mathematical chimera. However, using determinantal point processes, it is possible to 
construct such probabilistic models.

https://doi.org/10.1088/1742-5468/aa68a7
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Determinantal point processes (DPP’s) are defined in terms of a kernel where the 
negative correlation between points is built in. Because of the repulsion inherent of the 
model, they are convenient to describe physical systems with charged-liked particles, 
where the confinement to a bounded region is controlled by a weight function involving 
the external field. Unlike other non-trivial statistical models, the k-particle correlations 
of DPP’s admit an analytic expression as determinants whose entries are defined using 
the correlation kernel. Moreover, DPP’s enjoy a remarkable property which allows one 
to derive the macroscopic laws of physical systems constituted by interacting particles 
which display chaotic random behavior at small scales: for very large systems of points 
confined to bounded regions, the distribution patterns begin to look less chaotic and 
start to organize themselves in an almost uniform way. In several cases, in the proper 
scaled thermodynamical limit, the distributions are either uniform or given by analytic 
expressions. This phenomenon is related to a property of physical and mathematical 
systems known as universality [12].

The present paper explores a link between the theory of DPP’s and the Schrödinger 
representation of the Heisenberg group. This link is important because it allows one 
to deal with problems involving non-analytic functions of complex variables using 
real-variable methods. It has also been used in [13] to obtain analytic and probabi-
listic results for a large class of planar ensembles, building on previous work on time-
frequency analysis and approximation theory [14, 15]. While the papers [13, 15] are 
concerned with universality-type limit distribution laws and with probabilistic aspects 
of finite-dimensional Weyl–Heisenberg ensembles, in this paper we will focus on infinite 
Weyl–Heisenberg ensembles.

The article is organized as follows. Section  2 introduces planar DPP’s and our 
model process, the Ginibre ensemble. The notion of hyperuniformity is introduced in 
section 3. Section 4 presents higher Landau levels and the polyanalytic ensembles, that 
describe them mathematically. Section 5 presents Weyl–Heisenberg ensembles and the 
main results on hyperuniformity, which are then applied to the polyanalytic ensemble 
and higher Landau levels. We also discuss and analyze the total correlation function 
and the structure factor associated with these point processes, and provide explicit 
formulae whenever possible. Finally section 6 summarizes the results.

2. Planar DPP’s and the Ginibre ensemble

Determinantal point processes are defined using an ambient space Λ and a Radon mea-
sure µ defined on Λ [16, 17]. In our case, Λ = Rd, where d = 2m is an even number, 
and we use the identification Rd = Cm, since several of the examples of interest are best 
described in terms of complex variables. For this reason, we sometimes denote points in 
Rd = Cm by z, instead of the usual r. The important object is the Hilbert space L2 (Cm), 
with the Lebesgue measure in Cm. If {ϕj(z)}j�0 is an orthogonal sequence of L2 (Cm), 
one can define a reproducing kernel KN (z, w) by writing

KN (z, w) =
N−1∑
j=0

ϕj(z)ϕj(w).� (1)

https://doi.org/10.1088/1742-5468/aa68a7
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The kernel KN (z, w) will be the correlation kernel of the point process X , whose 

k-point intensities are given by ρk(x1, ..., xk) = det (KN(xi, xj))1�i,j�k. For instance, if 

m = 1, selecting ϕj(z) = (π j/j!)
1
2 e−

π
2
|z|2z j for j  =  0,..., N  −  1 in (1), we obtain

KN (z, w) = e−
π
2
(|z|2+|w|2)

N−1∑
j=0

(πzw) j

j!
,

which is the correlation kernel of the Ginibre ensemble of dimension N. If we take 
N → ∞, we obtain the correlation kernel of the infinite Ginibre ensemble:

K∞ (z, w) = eπzw−π
2
(|z|2+|w|2).� (2)

The infinite Ginibre ensemble is translationally invariant; this means that the intensity 
functions satisfy: ρN(z0 + z, . . . , zN−1 + z) = ρN(z0, . . . , zN−1), for all z ∈ C.

It is well known that the Ginibre ensemble is equivalent to a model for the probabil-
ity distribution of electrons in one component plasmas [18]. It also provides a model for 
the statistical quantum dynamics of a charged particle evolving in a Euclidean space 
under the action of a constant homogeneous magnetic field in the first Landau level. 
The Ginibre ensemble can also be seen as a 2D electrostatic model with N unit charges 
interacting in a two dimensional space, which is taken as the complex plane of the vari-
able z. Indeed, if the potential energy of the system is given as

U (z0, .., zN−1) = −
∑

0�i<j�N−1

log |zi − zj|+ π
N−1∑
k=0

|zk|2 ,

the corresponding probability distribution of the positions z0, . . . , zN−1 when the charges 
are in thermodynamical equilibrium, is proportional to the measure

exp [−U (z0, .., zN−1)] = exp

[
−π

N−1∑
k=0

|zk|2
] ∏

0�i<j�N−1

|zi − zj|2 .� (3)

It has been shown by Jean Ginibre [18, 19] that the distribution associated with the 
measure (3) is proportional to the one obtained from the N-point intensities associ-
ated with the Ginibre ensemble of dimension N. Thus, the Ginibre ensemble provides 
a model for the distribution of charged-like particles in the first Landau level. Until 
recently, there was no similar Ginibre type model for higher Landau levels, but this gap 
in the statistical physics literature is being filled thanks to recent work concerning the 
polyanalytic Ginibre ensembles [13, 20–23]—see also section 4.

3. Hyperuniformity of point processes

3.1. The number mean of a DPP

The number mean of a point process is the average number of points expected to be 
found inside an observation window D ⊂ Rn. One can obtain the number mean by inte-
grating the single particle probability density, which is proportional to the probability 
density of finding a particle at a certain point r ∈ D. In the case of a DPP, it can be 

https://doi.org/10.1088/1742-5468/aa68a7
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obtained from the 1-point intensity ρ, which is simply defined as the diagonal of the 
correlation kernel of the process:

ρ(r) = K (r, r) =
∑
i

|ϕi(r)|2 .

The expected number of points X (D) to be found in D ⊂ C is then given as

E [X (D)] =

∫

D

ρ(r)dr.

The 1-point intensity ρ is also called the single particle probability density.

3.2. Number variance and hyperuniformity

In [1], it has been discovered that a hyperuniform many-particle system modeled by a 
point process X in a Euclidean space of dimension d (not necessarily determinantal) is 
one in which the number variance

σ2(R) = E
[
X (DR)

2
]
− E [X (DR)]

2 ,

where DR is a d-dimensional ball of radius R, satisfies

σ2(R) = o(Rd).

3.3. The total correlation function

We will be mostly interested in a translationally invariant point process of intensity 1, 
i.e. the intensity functions satisfy ρn(r1 + r, . . . , rn + r) = ρn(r1, . . . , rn), for all r ∈ Rn, 
and ρ1 ≡ 1. For such processes, the two-point intensity depends essentially on one vari-
able, and we may write:

ρ2(r1, r2) = 1 + h(r2 − r1),� (4)
where h is known as the total correlation function, and is related to the determinantal 
kernel by

|K(r1, r2)|2 = −h(r2 − r1).� (5)

In statistical mechanics, it is also common to consider the structure factor defined by

S(k) = 1 + ĥ(k),

in the reciprocal space (Fourier) variable k. (We normalize the Fourier transform as: 

f̂(k) =
∫
f(r)eir·kdr.)

4. Polyanalytic Ginibre ensembles and higher Landau levels

4.1. The Landau levels

Polyanalytic ensembles of the pure type model the random distribution of charged-
liked electrons in the so-called Landau levels. Let us briefly describe this relation (see 

https://doi.org/10.1088/1742-5468/aa68a7
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[20, 24, 26] for more details). The Hamiltonian operator describing the dynamics of a 
particle of charge e and mass m∗ on the Euclidean xy-plane, while interacting with a 
perpendicular constant homogeneous magnetic field, is given by the operator

H :=
1

2m∗

(
i�∇− e

c
A
)2

,� (6)

where � denotes Planck’s constant, c is the light velocity and i the imaginary unit. 
Denote by B  >  0 the strength of the magnetic field and select the symmetric gauge

A = −r

2
×B =

(
−B

2
y,

B

2
x

)
,

where r = (x, y) ∈ R2. For simplicity, we set m∗ = e = c = � = 1 in (6), leading to the 
Landau Hamiltonian

HB :=
1

2

((
i∂x −

B

2
y

)2

+

(
i∂y +

B

2
x

)2
)

� (7)

acting on the Hilbert space L2 (R2, dxdy). The spectrum of the Hamiltonian HB consists 
of an infinite number of eigenvalues with infinite multiplicity of the form

εBn =

(
n+

1

2

)
B, n = 0, 1, 2, ...� (8)

Without loss of generality, we set B = 2π to simplify the relation to the Weyl–Heisenberg 
group described in the next sections. Then we define the operator Lz by conjugating the 
Landau Hamiltonian (7) as follows:

Lz := e
π
2
|z|2

(
1

2
H2π −

π

2

)
e−

π
2
|z|2 = −∂z∂z + πz∂z,� (9)

acting on the Hilbert space L2 (C). The spectrum of Lz is given by 
σ(Lz) = {νπ : ν = 0, 1, 2, . . .}. The eigenvalue rπ is the Landau level of order r. The 
eigenspace associated with the eigenvalue rπ is called the pure Landau level eigenspace 
of order r. With each pure Landau level eigenspace of order r one can associate correla-
tion kernels of the form

Kr(z, w) = L0
r(π |z − w|2)eπzw−π

2
(|z|2+|w|2),� (10)

where L0
r is the Laguerre polynomial, defined, for a general parameter α, as

Lα
n(x) =

n∑
k=0

(−1)k
(
n+ α

n− k

)
xk

k!
.

As we will see in the next section, (10) is the reproducing kernel of a pure Fock space 
of polyanalytic functions. Thus, we name the resulting determinantal point process as a 
polyanalytic ensemble of the pure type. It is related to the polyanalytic Ginibre ensem-
bles investigated in [20] and the terminology pure type is inherited from the Landau 
level interpretation: determinantal processes with kernels of the form considered in 
[20] have a physical interpretation as probabilistic 2D models for the distribution of 

https://doi.org/10.1088/1742-5468/aa68a7
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electrons in the first N Landau levels, while processes with correlation kernels of the 
form (10) model the distribution of electrons in a pure Landau level of order r. For ref-
erence, one can keep in mind that the basis functions of the Ginibre ensemble generate 
the proper subspace of L2 (C) consisting of analytic functions (the so-called Bargmann-
Fock space). Moreover, the case r  =  0 in (10) is simply

K0(z, w) = eπzw−π
2
(|z|2+|w|2),

which is the correlation kernel of the infinite Ginibre ensemble. Thus, the polyanalytic 
ensemble of the pure type associated with the first Landau level is, as mentioned in the 
introduction, the Ginibre ensemble.

Using the formula for the kernel in (10) and (5), we see that the total correlation 
function of the polyanalytic ensemble of the pure type is:

hr(z) = −
[
L0
r

(
π|z|2

)]2
e−π|z|2 , z ∈ C.� (11)

We note that hr is a radial function and that |hr(z)| � Cαe
−απ|z|2, for every α ∈ (0, 1)

—where Cα is a constant that depends on α.

4.2. Polyanalytic Fock spaces

A function F (z, z), defined on a subset of C, and satisfying the generalized Cauchy-
Riemann equations

(∂z)
q F (z, z) =

1

2q
(∂x + i∂ξ)

q F (x+ iξ, x− iξ) = 0,� (12)

is said to be polyanalytic of order q  −  1 [25]. It is clear from (12) that the following 
polynomial of order q  −  1 in z

F (z, z) =

q−1∑
k=0

zkϕk(z),� (13)

where the coecients {ϕk(z)}q−1
k=0 are analytic functions, is a polyanalytic function of 

order q  −  1. By solving ∂zF (z, z) = 0, an iteration argument shows that every F (z, z) 
satisfying (12) is indeed of the form (13).

The polyanalytic Fock space Fq(C) consists of all the functions of the form 

e−
π
2
|z|2F (z, z), with F (z, z) polyanalytic functions of order q  −  1, supplied with the 

Hilbert space structure of L2(C). The (infinite-dimensional) kernel of the polyanalytic 
Fock space Fq(C) is

Kq(z, w) = L1
q(π |z − w|2)eπzw−π

2
(|z|2+|w|2).� (14)

The connection to the Landau levels—see [14] for applications of this connection to 
signal analysis and [20, 26] to physics—follows from the following orthogonal decom-
position, first observed by Vasilevski [27]:

Fq(C) = F0(C)⊕ ...⊕F q−1(C),� (15)

https://doi.org/10.1088/1742-5468/aa68a7
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where F r(C) is the pure Landau level eigenspace of order r, whence the terminology 
pure used in [20]. Pure poly-Fock spaces provide a full orthogonal decomposition of the 
whole L2(C):

L2(C) =
∞⊕
r=1

F r(C).

The formula for Laguerre polynomials 
∑q−1

r=0 L
α
r = Lα+1

q−1 and (15) show that

Kq(z, w) =

q−1∑
r=0

Kr(z, w),

where Kr(z, w) is the reproducing kernel (10) of the pure Landau level eigenspace of 
order r.

5. The Weyl–Heisenberg ensembles

In this section we work with functions of several real variables, but keep a multi-index 
notation similar to the univariate case. As before, we let d = 2m be an even positive 
integer.

5.1. The Schrödinger representation of the Heisenberg group

The infinite Weyl–Heisenberg ensembles are DPP’s associated with the representation 
of the Heisenberg group (in [13], finite-dimensional versions are investigated). Given a 
window function g ∈ L2(Rm), the Schrödinger representation of the Heisenberg group H 
acts on L2(Rm) by means of the unitary operators

T (x, ξ, τ)g(t) = e2πiτe−πixξe2πiξtg(t− x), (x, ξ) ∈ Rd, τ ∈ R.

The corresponding representation coecients are

〈 f, T (x, ξ, τ)g〉 = e−2πiτeπixξ
〈
f, e2πiξ·g(· − x)

〉
.

5.2. Time-frequency analysis

The short-time Fourier transform Vgf(x, ξ) can be defined in terms of the above repre-
sentation coecients by eliminating the variable τ as follows:

Vgf(x, ξ) = e2πiτe−πixξ 〈 f, T (x, ξ, τ)g〉 =
〈
f, e2πiξ·g(· − x)

〉
.

We introduce convenient notation where we identify a pair (x, ξ) ∈ Rd with the com-
plex vector z = x+ iξ ∈ Cm. The time-frequency shifts of a function g : Rm → C are 
defined as follows:

π(z)g(t) := e2πiξtg(t− x), z = (x, ξ) ∈ Rm × Rm, t ∈ Rm.

https://doi.org/10.1088/1742-5468/aa68a7
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With this notation, given a window function g ∈ L2(Rm), the short-time Fourier trans-
form of a function f ∈ L2(Rm) with respect to g is

Vgf(z) := 〈 f, π(z)g〉 , z ∈ R2m.

The subspace of L2(R2m) which is the image of L2(Rm) under the short-time Fourier 
transform with the window g,

Vg =
{
Vgf : f ∈ L2(Rm)

}
⊂ L2(R2m),

is a Hilbert space with reproducing kernel given by

Kg(z, w) = 〈π(w)g, π(z)g〉L2(Rm) .� (16)

With the notation z = (x, ξ), w = (x′, ξ′), the kernel can be written explicitly as

Kg(z, w) =

∫

Rm

g(t− x)g(t− x′)e2πit(ξ
′−ξ)dt.� (17)

We can now introduce the WH ensembles.

Definition 5.1.  Let g ∈ L2(Rm) be of norm 1 and such that

|Vgg(z)| � C (1 + |z|)−s < +∞,� (18)

for some s > 2m+ 1 and C  >  0. The infinite Weyl–Heisenberg ensemble associated with 
the function g ∈ L2(Rm) is the determinantal point process with correlation kernel

Kg(z, w) = 〈π(w)g, π(z)g〉L2(Rm) .

Remark 5.2.  The condition in (18) amounts to decay of g in both the space and fre-
quency variables, and is satisfied by any Schwartz-class function.

Remark 5.3.  The WH ensemble associated with a window g is well-defined due to 
the Macchi–Soshnikov theorem [28, 29]. Indeed, the kernel Kg represents a projection 
operator and we only need to verify that it is locally trace-class. Given a compact do-
main D, the operator Tg,D represented by the localized kernel Kg,D is known as a Gabor–
Toeplitz operator. It is well-known that Tg,D is trace-class and that trace(Tg,D) = |D|; 
see for example [15, 30].

Remark 5.4.  For general windows g, the resulting WH ensemble is statistically aniso-
tropic in the sense that the point-statistics may depend on the vector displacements 
between the points.

Figure 1 shows realizations of Weyl–Heisenberg ensembles corresponding to two 
dierent windows: the Gaussian and the Hermite function of order 7. As explained in 
section 5.4, these correspond to dierent Landau levels.

While the correlation kernel of a WH ensemble is not translationally invariant, a 
simple calculation shows that the corresponding point process is. In addition, using the 
explicit formula for the kernel in (17) and (5), we see that the total correlation function 
of an infinite WH ensemble is:

hg(z) = −
∣∣∣∣
∫

Rm

g(t− x)g(t)e2πitξdt

∣∣∣∣
2

= −|Vgg(z)|2, z = (x, ξ) ∈ Rm × Rm = Rd.

�
(19)
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As we show in section 5.4, for concrete choices of the underlying window function g, it 
is possible to get explicit expressions for the corresponding function hg. Moreover, in 
many cases, these are radial functions. We next show that, in that case, we can describe 
the asymptotics of the structure factor near the origin.

Lemma 5.5.  Assume that the correlation function hg of a WH ensemble is radial. Then 
the corresponding structure factor satisfies:

|Sg(k)| � |k|2, as k −→ 0.

More precisely, there exist two constants c, C  >  0 such that c|k|2 � |Sg(k)| � C|k|2, for 
k near 0.

Proof.  Using (18) and (19), we see that |hg(z)| � (1 + |z|)−(2d+2), and consequently
(
1 + |z|2

)
|hg(z)| ∈ L1(Rd, dz).

Since Sg(k) = 1 + ĥg(k), it follows that the structure factor Sg is a C 2 function, and we 
can Taylor expand it as

Sg(k) = Sg(0) +
d∑

j=1

∂kjSg(0)kj +
∑
|α|=2

∂α
kSg(0)k

α + o(|k|2).� (20)

First, note that Sg(0) = 1 + hg(0) = 1− ‖g‖22 = 0. Second, since hg is radial,

∂kjSg(0) = −i

∫

Rd

zjhg(z)dz = 0,

and, therefore, the linear terms in (20) vanish. Similarly, the cross second derivatives 

in (20)—∂kj∂kj′S(0), with j �= j′—vanish, leading to

Sg(k) = ∆kSg(0)|k|2 + o(|k|2).

Hence, it suces to show that ∆kSg(0) �= 0. This is the case because

∆kSg(0) = −
∫

Rd

|z|2hg(z)dz,

and hg � 0, while hg �≡ 0.� □

5.3. Hyperuniformity of infinite Weyl–Heisenberg ensembles

Now we will present our study of the variance of Weyl–Heisenberg ensembles, relying 
on spectral methods originating from time-frequency analysis. Given a set Ω ⊆ Rd, ∂Ω 
denotes its frontier, 1Ω its characteristic function, |Ω| its measure and |∂Ω| its perimeter 
(defined as the d  −  1 dimensional measure of the boundary). The following is our main 
result.

https://doi.org/10.1088/1742-5468/aa68a7
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Theorem 5.6.  Weyl–Heisenberg ensembles are hyperuniform. More precisely, if X is a 
WH-ensemble and DR ⊂ Rd is a d-dimensional ball of radius R, then, as R → ∞,

σ2(R) = V [X (DR)] � Rd−1.

Proof.  We want to show that the number variance σ2(R) = E [X (DR)
2]− E [X (DR)]

2

—where DR is a 2m-dimensional ball of radius R—satisfies σ2(R) � R2m−1. We start 
defining the concentration operator

(TDR
f)(z) =

∫

DR

f(w)Kg(z, w)dw .

Using ([17, equation (1.2.4)]) one can write the number variance of X (DR) as

Figure 1.  WH ensembles corresponding to dierent Hermite windows. (a) Landau 
level #1. (b) Landau level #7.
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σ2(R) = E
[
X (DR)

2
]
− E [X (DR)]

2

=

∫

DR

Kg (z, z) dz −
∫

DR×DR

|Kg (z, w)|2 dzdw

= trace (TDR
)− trace

(
T 2
DR

)

= |DR| −
∫

DR×DR

|Kg(z, w)|2 dzdw.

Now, one can use [15, proposition 3.4] to obtain the upper inequality for the number 
variance:

σ2(R) � |∂DR|
∫

R2m

|z| |Vgg(z)|2 dz � R2m−1.� (21)

(See [31] for applications of this kind of inequalities to sampling theory.)� □

Remark 5.7.  The proof of theorem 5.6 extends to more general observation windows. 
In this case, the number variance is dominated by the perimeter of the observation 
window.

The next result shows that Rd−1 is actually the precise rate of convergence.

Theorem 5.8.  The variance of a Weyl–Heisenberg ensemble satisfies, as R → ∞,

σ2(R) = V [X (DR)] ∼ Rd−1,

where DR is a d-dimensional ball of radius R.

Proof.  As we have seen in the proof of theorem 5.6,

σ2(R) = trace (TDR
)− trace

(
T 2
DR

)
.

Arguing as in the proof of lemma 3.3 in [15], we obtain the following formula, where 
the variance is bounded in terms of the counting function of the eigenvalues of 
TDR

− {λk(R) : k � 1}—that are above a certain threshold. More precisely, for δ ∈ (0, 1):

σ2(R) = trace (TDR
)− trace

(
T 2
DR

)
�

|#{k � 1 : λk(R) > 1− δ} − |DR||
max

{
1
δ
, 1
1−δ

} .

� (22)
Now, by [32, theorem 4.1], there exists δ independent of R such that

|#{k � 1 : λk(R) > 1− δ} − |DR|| � R2m−1.

Combining this with (22) leads to the lower inequality

σ2(R) � R2m−1,

which, together with the upper inequality (21), yields the result.� □
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Remark 5.9.  Theorem 5.8 implies that the central limit theorem of Costin and Lebowitz 
[33] (in the general formulation of Soshnikov [34]) is applicable and, therefore, the ran-
dom variables X (DR)—when properly rescaled—are asymptotically normal as R → ∞.

Remark 5.10.  Theorem 5.8 extends a result of Shirai [23], that concerns DPP’s that 
are translationally and rotationally invariant (with a suitably decaying correlation ker-
nel). In this case, asymptotic formulas for the implied constants are also available. For 
general windows g, WH ensembles do not need to be rotationally invariant, see remark 
5.4. It is noteworthy that the hyperuniformity concept has recently been generalized 
to incorporate anisotropic features [35] and thus the WH ensembles provide a rigorous 
testbed to study directional hyperuniformity.

5.4. Weyl–Heisenberg ensembles for higher Landau levels: polyanalytic  
Ginibre-type ensembles

For m  =  1, using the notation z = x+ iξ and w = u+ iη, a calculation (see [36]) shows 
that the reproducing kernel of Vhr is related as follows to the reproducing kernel of the 
pure Fock space of polyanalytic functions:

Khr(z, w) = e−iπ(uη−xξ)−π
|z|2+|w|2

2 L0
r(π |z − w|2)eπzw.� (23)

Thus, the operator E which maps F to

e−iπxξF (z)

is an isometric isomorphism

E : Vhr → F r(C).

Thus, all properties of Weyl–Heisenberg ensembles are automatically translated to 
the polyanalytic ensembles, in particular the hyperuniformity property. In addition, 
polyanalytic ensembles, as presented in section 4, extend verbatim to Cm = Rd, pro-
vided that the formulae are interpreted in a vectorial sense. With this understanding, 
we obtain from theorem 5.6 the following corollary.

Corollary 5.11.  The pure polyanalytic ensembles are hyperuniform, and, as R → ∞,

σ2(R) = V [X (DR)] ∼ Rd−1,

where DR is a d-dimensional ball of radius R.

In the case d  =  2, this has been proved in [23, theorem 1] using explicit computa-
tions which also provide the value of the asymptotic constant for the pure polyanalytic 

Ginibre ensemble of order r, Cr =
8
π2 r

1/2. As noted in remark 5.7, the variance bounds 
in theorem 5.6 also apply to more general observation windows, and these conclusions 
therefore extend to the polyanalytic ensembles.

6. Conclusions

We introduced the infinite Weyl–Heisenberg ensembles in Rd and showed that they are 
hyperuniform. This provides another class of examples of d-dimensional determinantal 

https://doi.org/10.1088/1742-5468/aa68a7
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point processes that are hyperuniform beyond the so-called Fermi-type varieties [4]. 
We also proved that the number variance associated with spherical observation win-
dows of radius R grows like the surface area of the window, Rd−1. Due to the Costin–
Lebowitz central limit theorem, this implies that the number of particles of a WH 
ensemble within a growing observation window are asymptotically normal random 
variables.

We gave explicit formulas for the total correlation functions of WH ensembles. In 
the radial case, we also derived asymptotics near the origin for the structure factor, and 
showed that S(k) � k2 in the limit k → 0 in all space dimensions. The two-dimensional 
point process associated with the Ginibre ensemble has similar quadratic in k structure-
factor asymptotics.

Special choices of the waveform g in the definition of a WH ensemble lead to impor-
tant point processes. Specifically, we showed that when g is chosen as a Hermite func-
tion, the corresponding point process coincides with the so-called polyanalytic Ginibre 
ensemble of the pure type, which models the distribution of electrons in higher Landau 
levels. The corresponding total correlation functions resemble the ones of the Ginibre 
ensemble, this time with a Laguerre polynomial as an additional multiplicative factor. 
In particular, they decay, for large distances, faster than exponential; specifically, like 
a Gaussian.

The family of Weyl–Heisenberg ensembles also includes processes that are structur-
ally anisotropic in the sense that the point-statistics depend on the dierent spatial 
directions. Thus, our work provides the first rigorous means to study directional hyper-
uniformity of point processes. In such instances, it is relevant to consider a more general 
notion of hyperuniformity that accounts for the dependence of the structure factor on 
the direction in which the origin in Fourier space is approached [35].
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