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Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie

between crystals and liquids. Hyperuniform systems have attracted recent attention because they

are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has

been generalized to characterize two-phase media, scalar fields, and random vector fields. In this

paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we ana-

lyze spatial patterns generated from Gaussian random fields, which have been used to model the

microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spi-

nodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pat-

tern formation, including Rayleigh-B�enard convection. We show that the Gaussian random scalar

fields can be constructed to be hyperuniform. We also numerically study the time evolution of spi-

nodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime.

Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are

effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian ran-

dom field to produce a two-phase random medium tends to destroy the hyperuniformity of the pro-

genitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase

media derived from thresholded non-Gaussian fields. Our investigation paves the way for new

research directions to characterize the large-structure spatial patterns that arise in physics, chemis-

try, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists

to synthesize new classes of hyperuniform materials with novel physical properties via coarsening

processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4989492]

I. INTRODUCTION

Disordered many-particle hyperuniform systems are

exotic amorphous states of matter that lie between crystals

and liquids. They are like liquids in that they are statistically

isotropic with no Bragg peaks, but they also resemble perfect

crystals in the way they suppress large-scale density fluctua-

tions. The theoretical foundations of hyperuniformity were

only introduced around a decade ago,1 and a comprehensive

understanding of hyperuniformity is still in its infancy. The

basic feature of a many-particle hyperuniform system is the

suppression of density fluctuations at large length scales,

which provides a new way to classify crystals, quasicrystals,

and special disordered systems.1,2 In d-dimensional Euclidean

space Rd, we know that for a Poisson gas, the number vari-

ance r2
N Rð Þ of particles within a spherical observation window

of radius R has the volume scaling: r2
N Rð Þ � Rd, which is also

true for most typical disordered systems such as liquids. A

translationally invariant (statistically homogeneous) hyperuni-

form point configuration is one in which the number variance

grows more slowly than Rd or, equivalently, it possesses a

structure factor that satisfies the following condition:

lim
jkj!0

S kð Þ ¼ 0: (1)

Perfect crystals and many quasicrystals are hyperuni-

form with the surface-area scaling r2
N Rð Þ � Rd�1. There are

disordered hyperuniform systems that have the same scaling

as crystals but without translational or rotational symmetries.

If the structure factor goes to zero with the power-law form

as the wavenumber k � jkj tends to zero, i.e.,

S kð Þ � jkja jkj ! 0; (2)

where a > 0, the number variance has the following large-R

asymptotic scaling:1

r2
N Rð Þ �

Rd�1; a > 1;

Rd�1ln R; a ¼ 1;

Rd�a; 0 < a < 1:

R!1ð Þ:

8><
>: (3)

The exponent a is a rough measure of short-range order. As

a increases from zero, the degree of short-range order gener-

ally increases. Indeed, in the limit a ! 1, a hyperuniform

system becomes “stealthy,”3–5 which means that there is no

scattering in an exclusion region around the origin in k-

space, i.e.,

S kð Þ ¼ 0 for 0 � jkj � K: (4)
a)Author to whom correspondence should be addressed: torquato@

electron.princeton.edu
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Stealthy configurations include all perfect crystals, special

disordered hyperuniform structures, and so-called aperiodic

“stacked-slider” phases.5

Disordered hyperuniform systems have been found in

many physical systems during the last decade. Remarkably,

these examples span both equilibrium and nonequilibrium

phases, including both classical and quantum varieties.

Examples include “stealthy” disordered ground states,4 max-

imally random jammed particle packings,6–8 jammed colloi-

dal glasses,9–11 dynamical processes in ultracold atoms,12

disordered networks with large photonic band gaps,13 and

driven nonequilibrium systems.14 Moreover, hyperuniform-

ity arises in biological systems and mathematics, such as

avian photoreceptor patterns,15 immune system receptors,16

and even the one-dimensional point patterns derived from

the nontrivial zeros of the Riemann zeta function.17 It is

expected that new discoveries will continue to emerge since

we now know what to look for, namely, anomalous suppres-

sion of large-scale density fluctuations.

The practical implications of hyperuniformity are also

noteworthy. Hyperuniform materials have been fabricated at

the micro- and nanoscales for various photonic applica-

tions,18–20 surface-enhanced Raman spectroscopy,21 realiza-

tion of a terahertz quantum cascade laser,22 self-assembly of

diblock copolymers,23 and dense transparent materials.24

Moreover, the degree to which a disordered system is hyperu-

niform provides a useful means of characterizing large-scale

structural order.25,26

The hyperuniformity notion has been recently general-

ized to heterogeneous media (e.g., composites and porous

media),2,27 random scalar fields (e.g., temperature and con-

centration fields),28 and random vector fields (e.g., fluid

velocities in porous media and turbulent flow).28 The latter

category requires the extension of the standard definition of

hyperuniformity to depend on the direction at which the ori-

gin is approached in Fourier space.

Since the analysis of random scalar fields is more

straightforward than that of random vector fields, and hetero-

geneous media can also be seen as special cases of random

scalar fields, this paper focuses on the further development of

our understanding of the hyperuniformity of scalar fields.

Scalar fields can arise in a variety of physical contexts, includ-

ing concentration and temperature fields in heterogeneous and

porous media,29 laser speckle patterns,30 and spatial patterns

in biological, chemical, and ecology systems.31–34 Torquato28

showed that scalar fields generated by convolving hyperuni-

form point configurations with a non-negative dimensionless

radial scalar kernel function will inherit the hyperuniformity

of the original point configurations.

In this paper, we delve more deeply into the study of

hyperuniform scalar fields, especially how to construct them

via Gaussian random fields that have been used to model a

variety of systems, including the microwave background

radiation,35 heterogeneous materials,36 and random speckle

fields,37 Cahn-Hilliard equations for spinodal decomposi-

tion,38 and Swift-Hohenberg equations that describe thermal

convection in hydrodynamics31 as well as a general model of

emergent pattern formation.39 We re-examine these well-

known models under the “hyperuniform” lens and establish

the conditions under which they are hyperuniform or not.

We start by examining Gaussian random fields and

show how to construct hyperuniform fields from them. We

then study whether time-evolving patterns that arise from

spinodal decomposition via the Cahn-Hilliard description,40

which are ubiquitous in chemistry38 and biological sys-

tems,41 are hyperuniform. We find that these patterns are

actually hyperuniform in the scaling regime. Other nonequi-

librium spatial patterns with well-defined characteristic

wavelengths are also briefly mentioned. Torquato27 sug-

gested that some thresholded Turing patterns may not be

hyperuniform, but this is not necessarily true for general sca-

lar fields. Here, we show that the Swift-Hohenberg equations

can yield disordered hyperuniform patterns. We also present

a toy “polycrystal” model to describe the labyrinth-like pat-

terns generated by the Swift-Hohenberg equation.

Subsequently, we investigate whether a two-phase system

that is created by thresholding a general hyperuniform scalar

field can inherit the hyperuniformity of the parent system.

We theoretically ascertain that a thresholded disordered

Gaussian random field can never be hyperuniform. Then, we

propose possible ways to achieve hyperuniform two-phase

media from thresholding and provide a numerical example.

Our theoretical results can now be used to guide experimen-

talists to synthesize new classes of hyperuniform materials

via coarsening processes directly or stereolithography42 and/

or 3D printing techniques.43 There is a great need to expand

experimental capabilities in order to make large samples of

hyperuniform materials and our work expands those experi-

mental horizons. The results of our study highlight the rich-

ness of the hyperuniformity concept and provide new paths

to construct them theoretically and to synthesize them

experimentally.

In Sec. II, we provide necessary theoretical definitions

and background. In Sec. III, we explicitly show how to gener-

ate hyperuniform scalar fields via Gaussian random fields, the

Cahn-Hilliard equation for spinodal decomposition, and

Swift-Hohenberg equations. In Sec. IV, detailed simulation

procedures for the aforementioned systems and their corre-

sponding numerical results are provided. In Sec. V, we discuss

how to obtain two-phase media via thresholding random scalar

fields and whether they can be hyperuniform. We show that

thresholding hyperuniform Gaussian fields generally cannot

produce hyperuniform two-phase media. Finally, in Sec. VI,

we make remarks and discuss the implications of our findings.

II. BACKGROUND

To quantify hyperuniformity in scalar fields, we follow

the formalism laid out in Ref. 28. For a statistically homoge-

neous random scalar field F(x) in Rd that is real valued, the

autocovariance function is defined as

w rð Þ ¼ h F x1ð Þ � hF x1ð Þi
� �

F x2ð Þ � hF x2ð Þi
� �

i; (5)

where r¼ x2 – x1, the spectral density function ~w kð Þ is sim-

ply the Fourier transform of the autocovariance function

w(r). The hyperuniform condition is simply given by

244904-2 Z. Ma and S. Torquato J. Appl. Phys. 121, 244904 (2017)



lim
jkj!0

~w kð Þ ¼ 0; (6)

which implies the following sum rule:ð
Rd

w rð Þdr ¼ 0: (7)

This means that w(r) corresponding to a homogeneous

hyperuniform scalar field must be characterized by both pos-

itive and negative correlations such that its volume integral

vanishes identically. The integrated field within a spherical

window of radius R will fluctuate as the window position

varies. The associated variance r2
F Rð Þ is related to the auto-

covariance function via the relation44

r2
F Rð Þ ¼ 1

v1 Rð Þ

ð
Rd

w rð Þa r; Rð Þdr; (8)

where v1(R) is the volume of a d-dimensional sphere of

radius R, and a(r; R) is the scaled intersection volume, the

ratio of the intersection volume of two spherical windows of

radius R whose centers are separated by a distance r to the

volume of a spherical window. For a hyperuniform scalar

field, the local field variance r2
F Rð Þ decreases more rapidly

than R–d for large R.28

In some instances (e.g., digitized media), it is convenient

to employ a hypercubic window of side length a.45 Then, the

analog of Eq. (8) formally applies where R is replaced by a.

Similarly, a hyperuniform scalar field is one in which r2
F að Þ

decreases more rapidly than a–d for large a. The applications

presented in this paper focus on discretized two-dimensional

systems and so we use square windows in the subsequent

sections.

A. Level cuts of scalar fields

A two-phase random medium is a domain of space V �
Rd that is partitioned into two disjoint regions that make up

V: a phase 1 region V1 of volume fraction /1 and a phase 2

region V2 of volume fraction /2. The phase indicator func-

tion I ið Þ xð Þ for a given realization is defined as

I ið Þ xð Þ ¼
1; x 2 V i;

0; x 62 V i:

(
(9)

Two-phase media are essential for applications as heteroge-

neous materials, such as composite and porous media, bio-

logical media (e.g., plant and animal tissue), foams, polymer

blends, suspensions, and colloids.29 We can set a threshold

F0 to convert a scalar field to a two-phase medium, regions

that satisfy F(x)>F0 is phase 1, and regions that satisfy

F(x)<F0 is phase 2. The phase indicator function I xð Þ for

phase 1 is given by

I xð Þ ¼ H F xð Þ � F0½ �: (10)

The phase volume fraction for phase 1 is

/ ¼ hI xð Þi: (11)

The two-point correlation function is defined as

S2 x1; x2ð Þ ¼ hI x1ð ÞI x2ð Þi: (12)

This formalism can be easily generalized to the n-point cor-

relation function Sn,29 which is defined as

Sn x1; x2;…; xnð Þ ¼
Yn

i¼1

I xið Þ

* +
: (13)

For homogeneous media, this quantity only depends on the

relative displacement vector ri � xi � x1. The two-point cor-

relation function simplifies as S2 x1; x2ð Þ ¼ S2 rð Þ, where

r � x2 � x1. Then, the autocovariance function vV rð Þ is

given by

vV rð Þ � S2 rð Þ � /2: (14)

The hyperuniformity condition for two-phase media is

given by the following spectral-density condition:

lim
jkj!0

~vV kð Þ ¼ 0: (15)

This implies the following sum rule in direct space:27

ð
Rd

vV rð Þdr ¼ 0: (16)

The hyperuniformity of two-phase media obtained from

level cuts of scalar fields is discussed in Sec. V.

III. GENERATION OF SCALAR FIELDS

A. Gaussian random fields

Gaussian random fields have been used to model a vari-

ety of systems, including microwave background radiation,35

heterogeneous materials,36 and random speckle fields.37 A

Gaussian random field f(r) is constructed by a superposition

of plane waves with random wave vectors and phases,46 i.e.,

f rð Þ ¼ 1ffiffiffiffi
N
p

XN

i¼1

Ai cos ki � rþ /ið Þ; (17)

where the direction of ki is uniformly random oriented and

the phase /i is a random number that lies uniformly in the

interval [0, 2p]. In the large-N limit, the central limit theo-

rem ensures a Gaussian distribution of the field. Since it is

widely used to model multiphase heterogeneous materials, it

provides a good starting point to look for hyperuniformity.

Without a loss of generality, we normalize the field so

that the autocovariance at the origin is unity, i.e., w(r¼ 0)

¼ 1. Then, Ai satisfies

1

2N

X
A2

i ¼ 1: (18)

In the continuous limit, we have47

w r ¼ 0ð Þ ¼
ð

Rd

~w kð Þdk ¼ 1; (19)
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where ~w kð Þ is the spectral density. For Gaussian variables

with zero mean, the two-point information encoded in w(r)

totally determines any higher-order correlation function via

the correlation matrix.47

B. Spinodal decomposition

The Cahn-Hilliard equation was introduced to describe

phase separation by spinodal decomposition almost 60 years

ago.40 It has been applied to model alloys,38 polymer

blends,48 and even pattern formations in ecology.34 The

equation was derived from the expansion of free energy

regarding to local concentration c(x, t) in an inhomogeneous

liquid that incorporates the energy of a homogeneous one

and a gradient term which penalizes the existence of concen-

tration gradients. The free energy can be written as a func-

tional of the form

F c½ � ¼
ð

f cð Þ þ c
2
jrcj2

� �
dx; (20)

where c(x, t) is the concentration of the fluid at position x

and time t and f(c) is the free energy density of a homoge-

neous material. Normally, the latter quantity is written in a

double-well form, e.g., in this paper, we use the form

f cð Þ ¼ 1
4

c2 � 1ð Þ2. It can be seen that c¼61 corresponds to

two different phases. Finally, the parameter c controls the

width of the transition regions between different phases.

The time evolution of the concentration field c(x, t) is

described by the equation

@c

@t
¼ r � Drlð Þ; (21)

where D is the diffusion coefficient, and l ¼ f 0 cð Þ � cr2c is

the chemical potential. One can see that
ffiffiffi
c
p

sets the width of

the transition regions between different phases by solving

the equation in 1D in equilibrium, the solution is simply

c xð Þ ¼ tanhð xffiffiffiffi
2c
p Þ.

Typically, one begins with random initial conditions,

which means that the binary liquid is well-mixed and follows

the evolution of c(x, t) as governed by Eq. (21). The more

evenly mixed, the more accurate the following arguments

hold. In experiments, this can be achieved by a rapid quench,

splat cooling, or vapor quenching.49 Then, domains of two

phases will emerge and go through a coarsening process.

During the early stage, it was suggested that Brownian diffu-

sion is important.49 However, at later times, the system will

enter a so-called “scaling regime,” which means that the sys-

tem will show self-similarity. Although the domain size will

grow continuously following a power law t
1
3, the system

looks statistically the same.

In the scaling regime, the autocovariance function and

spectral density function will collapse to the same curves,

respectively, after being rescaled to the scaling functions

G xð Þ and F xð Þ. Specifically, in 2D, we have

w r; tð Þ ¼ G rk1 tð Þð Þ (22)

and

F k=k1 tð Þ
� �

¼ k1 tð Þ2 ~w k; tð Þ; (23)

where w(r, t) is defined as Eq. (5) with respect to the concen-

tration field c x; tð Þ; k1 tð Þ characterizes the typical length

scale, and there are several different ways to define it.

Normally, the spectral density function ~w k; tð Þ here is actu-

ally normalized by hc2i � hci2, since multiplying a constant

would not change anything regards to the determination of

hyperuniformity, in order to avoid confusion, we still used

the same notation here. There are several ways to determine

k1(t), such as the peak location in the spectral density func-

tion, the first moment of the spectral density function, and

the first zero in the autocovariance function. Here, the first-

moment method is used,50 i.e.,

k1 tð Þ ¼ Rk~w k; tð Þ
R~w k; tð Þ

: (24)

It is noteworthy that Furukawa51 has claimed that at deep

quenches, where the thermal force contributes less signifi-

cantly, the spectral density can have a form such that it goes

to zero as a power law (�k2); see also Ref. 52. (Note that all

of our simulations are carried out only for 2D; real experiment

would be carried in 3D and so the scalings should be differ-

ent.) Some experiments seem to support this scaling behav-

ior,53 but the fitting for small k was actually done in a region

immediately before the peak (see Fig. 1). The material used is

the mixture of PM and PVME and it took 1–2 h to get to the

scaling regime. It is clear that the smallest k obtained is as

large as 0.5kpeak, which is not small enough to make any state-

ment about the behavior when k! 0.

C. Swift-Hohenberg equation

Swift-Hohenberg equations were developed to study

Rayleigh-B�enard (RB) convection in hydrodynamics. Such

equations involve a stochastic thermal noise term to account

for the effect of fluctuations. However, the deterministic ver-

sion is of great importance in nonlinear pattern formation by

FIG. 1. The asymptotic behavior of the experimental scaled structure factors

(symbols) and the theoretical scaled structure factors (solid lines) at small k,

where F(x) is the scaled structure factor and x is k/kpeak. We can see that at

small k, F(x) � x2. Reproduced with permission from J. Chem. Phys. 85,

6118 (1986). Copyright 1986 AIP Publishing LLC.
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itself, and, often, fluctuations can be neglected. For our pur-

poses, here we only investigate the deterministic version of

the Swift-Hohenberg equation, which takes the form54

@u

@t
¼ �u� r2 þ 1ð Þ2u� u3; (25)

where u(x, t) is, in general, a real field in d-dimensional

space and the autocovariance function w(r, t) is defined as

Eq. (5) with respect to the field u(x, t).
The Swift-Hohenberg equation and its variants can give

rise to crystal54 and quasicrystal patterns.55 However, the

most common patterns that arise are labyrinth-like textures

that consist of “channels” whose widths are determined by a

pre-selected wavelength. To make this feature apparent, the

equation that we actually will solve is a transformation of

Eq. (25), the form which emphasizes the selected wavenum-

ber k0,56 i.e.,

@u

@t
¼ D �� r2 þ k2

0

� �2
h i

u� u3; (26)

where D is another parameter that sets the rate of diffusion.

The transformation leading to Eq. (26) is x ¼ k0xk; � ¼ �k=
k4

0; t ¼ Dk4
0tk, and u ¼ uk=D1=2k2

0; here, the subscript k
denotes the case of Eq. (26).

The hyperuniformity of a certain labyrinth-like Turing

patterns has been analyzed by Torquato,27 where the pattern

was thresholded to make a two-phase system with a certain

characteristic wavelength. (Turing proposed a reaction-

diffusion theory of morphogenesis57 that has served to model

stripes, spots, and spirals that arise in biology.) The spectral

density of the thresholded image shows a well-defined annu-

lus in which the scattering intensity is enhanced, but the sys-

tem is not hyperuniform. This counterintuitive result is

consistent with the fact that dense packings of spheres of

identical size are not necessarily hyperuniform.58 These

results show that hyperuniformity is very subtle because it

demonstrates that assembling space-filling “building blocks”

of fixed size does not guarantee the anomalous suppression

of large-scale density fluctuations associated with hyperuni-

formity. The aforementioned finding about Turing patterns

also leads to the natural theoretical question of whether there

exists hyperuniform two-phase systems with spectral densi-

ties in which scattering is entirely concentrated within some

relatively thin annulus defined by a small range of wavenum-

bers away from the origin. It was proved27 that a ring-like

spectral density is not realizable for two-phase media

because it implies a vanishing specific surface. However, if

we consider the system in “grey-scale,” which means treat-

ing it as a scalar field, this analysis does not apply. In Sec.

IV, we will demonstrate that these labyrinth-like patterns are

effectively hyperuniform, or even “stealthy”3–5 in the same

sense of Eq. (4), but with S(k) replaced by ~w kð Þ.

IV. SIMULATION PROCEDURES AND RESULTS

A. Hyperuniformity and Gaussian random fields

From the equations presented in Sec. III, it is clear that

Gaussian random fields are constructed by summing up

elements with wave vectors ki such that the sum rule Eq.

(19) on the autocovariance function in the continuous limit is

satisfied. Thus, constructing hyperuniform scalar fields

should be straightforward. In the continuous limit, Eq. (17)

becomes an integral in k-space, and we then can choose Ai

as a function of k that vanishes at the origin. (This is due to

the fact that the spectral density is proportional to A2(k), and

the only constraint is that the volume integral of A2(k) con-

verges.) Numerically, one can only do the integral in digi-

tized k-space for a finite size system; however, one can

always improve the resolution to meet any practical require-

ment. The general formula can be written as

f rð Þ ¼ C
XN

i¼1

A kið Þ cos ki � rþ /ið ÞDkd
i ; (27)

where C is just a normalization constant, and Dkd
i is the vol-

ume element in d dimensions that contains ki. Here, two

choices of A(k) in 2D are presented

A kð Þ ¼
ffiffiffi
k
p

e�ak2

; (28)

A kð Þ ¼ k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ k10

p ; (29)

where a and b are two positive constants. For both cases,

A(k) vanishes at the origin and the volume integral of A2(k)

converges. The first choice [Eq. (28)] has an exponential

decay tail and the corresponding spectral density goes to

zero linearly at the origin. The second choice [Eq. (29)] has

a power-law decay and the corresponding spectral density

goes to zero quartically at the origin. Each one is a superpo-

sition of 10 000 plane waves (N¼ 10 000), which are

grouped evenly into 100 groups from Dk to 100Dk with ran-

dom orientations, where Dk is simply 2p/L, where L is the

side length in the simulation. Since polar coordinates are

used here, Dk2
i will contribute factors ki and Dk. The exact

value of C is irrelevant to hyperuniformity so the summation

is not normalized.

It is very straightforward to transform these systems to

stealthy ones by simply applying a translation operation to

the spectral density so that ~wstealthy kð Þ ¼ ~whyperuniform k � Kð Þ,
for k	K and ~wstealthy kð Þ ¼ 0, for k<K. This operation

applied to Eq. (27) yields

f rð Þ ¼ C
XN

i¼1

A kið Þ cos ki þ Kk̂i

� �
� rþ /i

� �
Dkd

i : (30)

Realizations of stealthy scalar fields corresponding to

Eqs. (28) and (29) (K is chosen to be 10Dk) as well as the

spectral densities themselves are shown in Figs. 2 and 3 for

certain parameters. These two constructions exhibit different

morphologies, but each are characterized by an exclusion

region around the origin k¼ 0 in which the intensities are

very small. Indeed, the hyperuniformity metric8

H �
~w 0þð Þ

~w kpeakð Þ
(31)
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is relatively very small (�10�4), where kpeak is the wave-

number at the peak height of the spectral function. The

hyperuniformity metric H provides a measure of the degree

to which density fluctuations are suppressed at large length

scales. A perfectly hyperuniform system has H¼ 0, but a

system may be considered to be effectively hyperuniform

when H is of the order of 10�4 or smaller.8

Our results show that Gaussian random fields provide

a very straightforward way to generate targeted disordered

hyperuniform or stealthy scalar fields at very large length

scales and thus can guide experimentalists to synthesize

new hyperuniform materials via stereolithography and/or

3D printing techniques. The question of whether two-phase

media obtained by thresholding hyperuniform Gaussian

random fields can be hyperuniform will be answered in

Sec. V.

B. Hyperuniformity and the Cahn-Hilliard equation

Here, we simulate the evolution of the concentration

field using the Cahn-Hilliard equation (21). The parameters

used in our simulation are as follows: D¼ 0.01 and c ¼ 0.5.

The initial condition is a random scalar field with the ampli-

tude of 0.0001 (can be both positive and negative). The equa-

tion was integrated on a 1000
 1000 2D grid under periodic

boundary conditions. The grid spacing is unity, and the time

step is unity (with a characteristic time s ¼ c/2D¼ 25). The

patterns at different times are shown in Fig. 4.

Under this set-up, the system is in a critical quench,

which means that the two phases have equal volumes. This

can be changed by using a biased initial condition, if one

phase dominates in volume fraction, then it will form drop-

lets, which is shown in Fig. 5. Here, we focus on the analyses

of the critical quench case. An example of the autocovar-

iance function is shown in Fig. 6, which shows that it decays

FIG. 2. (a) Realization of a stealthy scalar field corresponding to Eq. (28)

with a ¼ 2.5 and K¼ 10Dk. There are 10 000 plane waves added together

with the sample size of 1000
 1000. Here, only a 300
 300 portion is

shown for clarity. (b) The corresponding spectral density of (a), the color

bar is in logarithm scale. The spectral density has a “hole” in the origin.

FIG. 3. (a) Realization of a stealthy scalar field corresponding to Eq. (29)

with b ¼ 0.00001 and K¼ 10Dk. There are 10 000 plane waves added

together with the sample size of 1000
 1000. Here, only a 300
 300 por-

tion is shown for clarity. (b) The corresponding spectral density of (a), the

color bar is in logarithm scale. The spectral density shows a sharp ring.
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very fast near the origin but apparently has a long tail. The

evolution of the spectral density is shown in Fig. 7. It is seen

that after scaling, all of the curves nearly collapse on to a sin-

gle scaling curve after t¼ 100 000.

Hyperuniformity in these systems is revealed by scalar

field fluctuations (denoted by r2
F að Þ) as well as the behavior

of the spectral density near the origin. It is seen that the sca-

lar field fluctuations decay as a�3, which is faster than a�2,

the case of typical random scalar fields in 2D; while the

log-log spectral density near the origin shows that it goes to

zero as k4, which is consistent with the exponent found in

scalar field fluctuations. In order to minimize finite size

effects, the results here are obtained for a very large system

(10 000
 10 000) at time t¼ 100 000 (see Figs. 8 and 9).

Since the system has already entered the scaling regime,

we would get the same scaling behavior for scalar field fluc-

tuations at different times, which also holds true for spectral

densities at small k. Thus, it is safe to say that the system

will remain hyperuniform for all future times in the infinite-

size limit. For finite systems, they will finally break up into

two large disjointed domains and lose the bicontinuous struc-

ture, which implies a proper time window is required to

observe this phenomenon experimentally.

FIG. 4. The time evolution of the concentration field of a system evolving

under the Cahn-Hilliard equation (21) with critical quench (volume fraction

ratio of the two phases is 1:1); four snapshot taken at t¼ 10 000, t¼ 100 000,

t¼ 200 000, and t¼ 1 000 000 are shown here; the system size is

1000
 1000; the characteristic time s ¼ c/2D¼ 25.

FIG. 5. The time evolution of the concentration field of a system evolving

under the Cahn-Hilliard equation (21) off critical quench (volume fraction

ratio of the blue phase and yellow phase is 2:8); two snapshot taken at

t¼ 10 000 and t¼ 100 000 are shown here; the system size is 1000
 1000;

the characteristic time s ¼ c/2D¼ 25.

FIG. 6. The autocovariance function w(r) versus rk1 at t¼ 100 000 associ-

ated with the right-upper panel of Fig. 4, where r is scaled by the characteris-

tic wavenumber k1. The characteristic time s ¼ c/2D¼ 25.

FIG. 7. The scaled spectral density ~w kð Þk2
1 tð Þ versus k/k1(t) at t¼ 10 000,

t¼ 100 000, t¼ 200 000, and t¼ 500 000 associated with Fig. 4 (the pattern

at t¼ 500 000 is not shown); all curves collpase on to one another after

t¼ 100 000. The characteristic time s ¼ c/2D¼ 25.

FIG. 8. Scalar-field fluctuations r2
F að Þ as a function of the window side

length a at t¼ 100 000 associated with a 10 000
 10 000 system. The largest

window shown here is 5000
 5000.
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Although our calculations focused on critical quenches

in the scaling regime, there are two more observations that

are noteworthy as well. From Fig. 7, it is seen that when

t¼ 10 000, the system is not in the scaling regime. However,

the spectral density function at t¼ 10 000 actually has a higher

peak compared to those in the following times, and a careful

look at the low-k region shows that low-k values are smaller

than the ones obtained from the scaling regime. Namely, for

the same k/kpeak ratio, ~w kpeakð Þ=~w kð Þ is higher, and hence the

hyperuniformity metric H [defined by Eq. (31)] is smaller. In

this sense, the system at t¼ 10 000 is even more hyperuni-

form, which implies that the system may already be hyperuni-

form before entering the scaling regime. This means that

experimentally one may not need to wait till the system enters

the scaling regime to prepare a hyperuniform state.

We also investigated the scalar field fluctuations and the

spectral density function for systems off the critical quench,

not very surprisingly that the scalar field fluctuations have

the same scaling as a�3. However, the scaling of the spectral

density is more sensitive and deviates at the first few smallest

wave numbers. We believe that this discrepancy is induced

by the fact that the interfacial region is more important for

droplet patterns and a limited resolution of the mesh can

impair the hyperuniformity. We find that an increase in the

resolution and the system size do result in more hyperuni-

form spectral densities. We expect that systems off the criti-

cal quench are still hyperuniform. What is remarkable about

these systems is that the phase with smaller volume fraction

consists of numerous droplets with a certain distribution of

sizes, which is reminiscent of the previous work done for

hyperuniform point configurations4 and spherical packings,59

despite the fact that here we are dealing with a scalar field.

Nonetheless, an analog to particle systems may help us think

why spinodal decomposition patterns are hyperuniform.

From the patterns of droplets (Fig. 5), we can see that two

neighboring droplets tend to maintain some distance between

each other; otherwise they will merge into a single droplet.

This effective short-ranged interaction between droplets is

beneficial to establish large-scale order in these systems, just

like it does in jammed packings.60,61 Moreover, the domain

size grows slower (t
1
3) than the diffusion rate (t

1
2), which tends

to give the system enough time to wipe out the inhomogene-

ity inside each domain. The configurations shown in Fig. 5

are essentially polydisperse packings of disks (or spheres in

3D) and should be of great importance in applications, since

such configurations can be generated directly through the

integral of a time evolution PDE rather than time consuming

optimization algorithms. Moreover, they could also be real-

ized easily by modern fabrication techniques such as 3D

printing.

C. Hyperuniformity and the Swift-Hohenberg equation

Here, we simulate pattern formation under the Swift-

Hohenberg equation (26) and analyze its degree of hyperuni-

formity. We restrict ourselves to the parameter space that

gives rise to labyrinth-like patterns.

All results shown here are obtained with parameters

D¼ 0.01 and � ¼ 0.1, and k0 is varied to achieve different

characteristic wavelengths 2p/k0 and different degrees of dis-

order. The initial condition is a random scalar field uniformly

distributed from �0.001 to 0.001. The equation was integrated

on a 1000
 1000 2D grid under periodic boundary condi-

tions. The grid spacing is unity, and the time step is also unity.

The desired patterns are almost formed at t¼ 10 000, and cal-

culations shown here are all done at t¼ 100 000.

A pattern at t¼ 100 000 with wave vector k0¼ 0.7 is pre-

sented in Fig. 10. The evolution of the spectral densities of

this system is shown in Fig. 11. It is noticeable that a peak

emerges at the selected wave vector and fully forms there at

large times. The hyperuniformity metric H is between 10�5

and 10�4 at t¼ 100 000, which is considered to be effectively

hyperuniform.8 But the situation here is more subtle than in

the case of spinodal decomposition. The spectral density drops

very quickly away from the peak. It is also essentially zero for

a continuous range of k from k¼ 0 to almost its peak value

and hence becomes stealthy-like (see Sec. III). Compared

with the randomly jammed monodisperse particles,60 these

disordered labyrinth-like patterns are “jammed” in the sense

that the channels are of equal width and they partition the

FIG. 9. Spectral density ~w kð Þ as a function of the ratio k/kpeak at t¼ 100 000

associated with a 10 000
 10 000 system, where kpeak denotes the position of

the peak. It is shown that the spectral density goes to zero quartically in k (k4).

FIG. 10. A typical pattern under the dynamics of the Swift-Hohenberg equa-

tion with the selected wave vector k0¼ 0.7 at t¼ 100 000. The system size is

1000
 1000. Here, a 500
 500 portion is shown.
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space completely. This simple observation may explain why

these patterns are hyperuniform.

However, not every pattern generated by the Swift-

Hohenberg equation results in the same type of hyperuni-

formity. By tuning the selected wavelength [or equivalently,

by tuning � in the original form, Eq. (25)], one can manipu-

late the “persistence length” of the channels, which finally

reveals the degree of disorder in these systems. To elucidate

this point, we measure the scaling of scalar field fluctuations

r2
F að Þ in these systems. We generate very large systems

(10 000
 10 000) to perform the calculations. The compari-

son of four different systems is shown in Fig. 12. Notice that

when channels get narrower, fluctuations decrease faster.

The scaling ranges from the ordinary case (a�2) to a hyperu-

niform case (a�3).

The rapid drop of field fluctuations at small values of a
could be attributed to the fact that at short length scales,

channels look rather ordered. Indeed, we model this behavior

by introducing a toy “polycrystal” model. We partition an

entire system into many disjoint rectangular subsystems with

a certain size distribution and then, inside each subsystem,

put down parallel aligned channels with randomly chosen

orientations. The behavior of the field fluctuations obtained

from this model is similar to those seen in the Swift-

Hohenberg patterns. Importantly, by applying this

“polycrystal” model as the initial condition, we find that the

Swift-Hohenberg equation finally gives a solution with a

higher peak in spectral densities (see Appendix B). This sug-

gests that the solution of the Swift-Hohenberg equation is

even more ordered than our toy “polycrystal” model. A pos-

sible explanation is that during the evolution the originally

linear channels become tortuous so that they can connect

themselves to the ones in adjacent subsystems that are for-

merly detached from each other, thus eliminate the defects at

the boundaries in the toy “polycrystal” model.

V. LEVEL CUTS OF RANDOM SCALAR FIELDS

Our interest in this section is to determine whether two-

phase random media derived from thresholding hyperuni-

form random scalar fields inherit the hyperuniformity prop-

erty of the progenitor scalar fields.

FIG. 11. The time evolution of the angular averaged spectral density ~w kð Þ
as a function of k associated with a 1000
 1000 system with the selected

wave vector k0¼ 0.7. Spectral densities are shown at t¼ 500, t¼ 5450,

t¼ 8000, t¼ 100 000, t¼ 1 000 000, and t¼ 10 000 000.

FIG. 12. Local scalar field fluctuations r2
F að Þ as a function of the window

side length a at t¼ 100 000 with different k0 as obtained from simulation of

the Swift-Hohenberg equation. In each right-upper corner, a very small

portion (200
 200) of the system is shown. (a) Local field fluctuations with

k0¼ 0.2p, the scaling is a
�2

for large-a. (b) Local field fluctuations

with k0¼ 0.7, the scaling is a
�2.4

for large-a. (c) Local field fluctuations

with k0¼ 0.25p, the scaling is a
�2.8

for large-a. (d) Local field fluctua-

tions with k0¼ 0.32p; the scaling is a
�3

for large-a.
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A. n-Point statistics from Gaussian random fields

We first consider the question for Gaussian random

fields. For a Gaussian random field F(x), the joint probability

density function is given by the following expression:29

Pn F x1ð Þ;…;F xnð Þ
	 
 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð Þndet G
p exp � 1

2
FTG�1F

� �
;

(32)

where elements of the correlation matrix G are given by the

field-field correlation function

Gij ¼ G xijð Þ ¼ hF xið ÞF xjð Þi; (33)

where xij ¼ jxj � xij. Without the loss of generality, we con-

sider Gaussian random fields with mean zero and variance

unity. Then, the field-field correlation function is actually the

autocovariance function w(r), which is defined by Eq. (5).

For statistically homogeneous fields, it is easily seen that all

of the higher-order statistics of the field are determined by

two-point information, namely, w(r). Furthermore, we

restrict ourselves to isotropic scalar fields, implying that the

autocovariance function w(r) is simply a radial function

w(r), where r � jrj.
Now suppose we set a threshold F0 to make the field a

two-phase medium, F0 can be taken as any real value

between –1 and1. For phase 1 with F>F0, one can write

down the n-point probability function Sn
29

Sn x1; x2;…; xnð Þ ¼
ð1
�1
� � �
ð1
�1


Yn

i¼1

H F xið Þ � F0

	 
�
Pn


 F x1ð Þ;…;F xnð Þ
	 


dF1 � � � dFn:

(34)

We are particularly interested in the first two lowest-

order n-point probability functions, which enables us to

obtain the autocovariance function vV(r). It can be shown

that29,46

vV rð Þ ¼ S2 � S2
1 ¼

1

2p

ðw rð Þ

0

exp � F2
0

1þ t

� �
dtffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p ; (35)

which cannot be evaluated analytically in a closed form,

except for F0¼ 0, which gives vV rð Þ ¼ arcsin w rð Þð Þ= 2pð Þ.
Without the loss of generality, we expand the integral as a

series expansion in the variable w to analyze its properties, i.e.,

vV rð Þ ¼ 1

2p
exp �F2

0

� �X1
n¼1

anw
n; (36)

we find that the nth coefficient an is

an ¼
1

n!
Hn�1

2 F0ð Þ; (37)

where Hn–1 is Hermite polynomial of degree (n – 1). A few low-

est coefficients are a1 ¼ 1; a2 ¼ F2
0=2!; a3 ¼ F2

0 � 1
� �2

=3!…

We now show that two-phase random media derived

from a large class of hyperuniform Gaussian random fields

that cannot be hyperuniform. Before formalizing this result

as a proposition, we need to introduce some definitions and

restrictions. In analogy with disordered sphere packings,62

we define a statistically homogeneous and isotropic scalar

field to be disordered if it possesses a radial autocovariance

function w(r) that decays to zero faster than 1=jrjd for large

jrj. This implies that the scalar field cannot have long-range

order and that the autocovariance function is absolutely

(Lebesgue) integrable.

Proposition: A two-phase random medium derived from
a hyperuniform disordered Gaussian random field cannot be
hyperuniform.

Sketch of Proof: First, we observe that since �1 � w rð Þ
� 1, for any integer n,

jwn rð Þj � jw rð Þj for all r: (38)

Indeed, except at the zeros of w(r), denoted by {z1, z2,…},

and the origin, one has the following strict inequality for any

n	 2:

jwn rð Þj < jw rð Þj for all r 62 f0; z1; z2;…g: (39)

Moreover, because w(r) is a decaying function, wn(r) is gen-

erally a different function from w(r) that is skewed to the left

for n	 2 such that it satisfies (38). Let us rewrite the series

expansion as

vV rð Þ ¼
exp �F2

0

� �
2p

w rð Þ þ Dw rð Þ½ �; (40)

where

Dw rð Þ ¼ a2w
2 þ a3w

3 þ a4w
4 þ � � �: (41)

Assuming that the Gaussian random field is hyperuniform,

that is
Ð

Rdw rð Þdr ¼ 0, Eq. (40) yields the integral relation

ð
Rd

vV rð Þdr ¼ exp �F2
0

� �
2p

ð
Rd

Dw rð Þdr 	 0: (42)

The nonnegativity of the integrals in (42) follows from the

fact that the first integral is the spectral density of a two-

phase medium at the origin. Since wn(r) is generally a differ-

ent function from w(r) that is skewed to the left for any n	 2

such that the inequality (38) is obeyed, and each distinct

power of w(r) is different from any other power of w(r), the

volume integrals of w2(r), w3(r), w4(r),… will generally be

positive, and hence ð
Rd

vV rð Þdr > 0; (43)

i.e., the two-phase medium is not hyperuniform.

Remarks:

(1) Note that F0 ¼ 0 represents the easiest case to allow for

the possibility of hyperuniform two-phase media because

even powers of the autocovariance (e.g., w2m(r) for

m	 2), which are intrinsically positive, do not appear.
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(2) In Appendix C, we provide explicit examples of realiz-

able hyperuniform Gaussian autocovariance functions

and volume integrals of some of their high-order powers.

B. Numerical results for Gaussian random fields

The general argument above shows that a thresholded

Gaussian random field cannot yield a hyperuniform two-phase

system, even when the scalar field itself is hyperuniform.

Indeed, this is consistent with the numerical results obtained

here by thresholding the two hyperuniform scalar fields in

Figs. 2 and 3. We found that after thresholding at zero, the

hyperuniformity was destroyed for both cases. Two-phase

configurations for both cases are shown in Fig. 13. The analy-

sis reveals that the hyperuniformity metric H increases by

three orders of magnitude after thresholding, which means

that the hyperuniformity is significantly destroyed by

thresholding.

C. Towards hyperuniform two-phase media from
non-Gaussian fields

The practical question remains as to how close one can

come to achieve perfect hyperuniformity? Of course, a

thresholded periodic scalar field is still hyperuniform.

However, a periodic scalar field is neither isotropic above

dimension one nor disordered according to our aforemen-

tioned criterion. We expect that a hyperuniform non-

Gaussian scalar field that is essentially a two-phase system

(bimodal distribution with sharp peaks) should be more

likely to be hyperuniform after thresholding. Examples of

such patterns are spinodal decomposition structures intro-

duced and studied in Secs. III and IV. In Fig. 14, we show a

comparison of the original spectral density (the whole pro-

file of the one depicted in Fig. 9) and the corresponding one

after thresholding. The functional forms of the spectral

densities are nearly the same (up to a vertical-axes scaling

factor), as expected. The only difference is that the low-k
scaling is lost after thresholding. Even so, the low-k values

of the spectral densities still remains very small compared

with the peak value, giving the hyperuniformity metric

H� 10�3. We expect that the discrepancy at low k would

be made smaller by employing a higher resolution in the

thresholded system.

Moreover, as noted in the Introduction, we know that

scalar fields generated by convolving hyperuniform point

configurations with a non-negative dimensionless radial

scalar kernel function K(x; C), where C represents a set of

parameters that characterizes the shape of the radial func-

tion, will inherit the hyperuniformity of the original point

configurations.28 Scalar fields generated in this way are

generally non-Gaussian. It is clear that in the case in which

the kernel function is highly concentrated at each of the

points in the point patterns, the resulting non-Gaussian sca-

lar field is nearly a two-phase system. After thresholding

such a system, the resulting two-phase medium will con-

sists of “particles” distributed throughout a “matrix” that

inherits the hyperuniformity of the original point configura-

tion. This provides another possible method to obtain disor-

dered hyperuniform two-phase media from non-Gaussian

random scalar fields.

FIG. 13. Thresholded two-phase configurations from Sec. III. The threshold

is zero, and yellow phase is positive while the blue phase is negative. The

system size is 1000
 1000 for both cases. (a) Thresholded two-phase con-

figuration obtained from the Gaussian field shown in Fig. 2. The extrapo-

lated spectral density at the origin is 0.47, which gives the hyperuniformity

metric H� 0.06. (b) Thresholded two-phase configuration obtained from the

Gaussian field shown in Fig. 3. The extrapolated spectral density at the ori-

gin is 0.25, which gives the hyperuniformity metric H� 0.01.

(a)

(b)

FIG. 14. A comparison of spectral densities before and after thresholding

at zero. The underlying configuration was obtained from the same

10 000
 10 000 system at t¼ 100 000 from the Cahn-Hilliard equation

that gives the results shown in Figs. 8 and 9. The insets show the behavior

near the origin. (a) Angular averaged spectral density of the scalar field.

(b) Angular averaged spectral density of the thresholded two-phase

system.

244904-11 Z. Ma and S. Torquato J. Appl. Phys. 121, 244904 (2017)



VI. CONCLUSIONS AND DISCUSSION

The hyperuniformity concept has been generalized to

theoretically characterize two-phase media, scalar fields,

and random vector fields.27,28 In this paper, we focused on

the study of hyperuniform scalar fields, especially how to

construct realizations of such systems via Gaussian random

fields as well as spatial patterns that emerge as solutions to

the Cahn-Hilliard equation for spinodal decomposition, and

Swift-Hohenberg equations. We re-examined these classical

models under the “hyperuniform” lens. Our results advance

our theoretical understanding of hyperuniformity and pro-

vide new guidelines to synthesize these new classes of

hyperuniform materials. We showed that one can construct

hyperuniform (or stealthy) Gaussian fields by directly

designing their spectral densities and our approximated

numerical examples demonstrated that they are indeed effec-

tively hyperuniform.

We also analyzed the time evolution of spinodal decom-

position patterns as obtained from the Cahn-Hilliard equation.

We showed that such systems are hyperuniform after they

enter the scaling regime, but hyperuniformity may emerge

even earlier. We look forward to see further experimental

work that supports our findings, especially for the case of off

critical quenches. It is expected that experimentalists can now

produce hyperuniform materials directly by “freezing” the

dynamics. Since the Cahn-Hilliard equation is widely applied

in physics, chemistry, biology,63 and even ecology,34 it also

implies that hyperuniformity may be more universal than has

been realized thus far. Indeed, many patterns in ecology

have been well modeled by the Turing-like reaction-diffu-

sion mechanism mentioned earlier.32 Remarkably, a recent

paper that studied the interplay between termite mounts and

vegetation reports a spectral density that appears to indicate

vegetation patterns between termite mounds are hyperuni-

form,33 but this was not central to the paper and requires

further study.

We also studied pattern formation that is derived from

solutions of the Swift-Hohenberg equation. We demonstrated

that such patterns can indeed be hyperuniform. We found

that certain labyrinth-like patterns that emerge as solutions

to the Swift-Hohenberg equation are effectively hyperuni-

form and actually exhibit spectral densities that resemble

stealthy ones.

We also studied the hyperuniformity of two-phase

media derived from level cuts of hyperuniform scalar

fields. We showed that a thresholded Gaussian random

field cannot be hyperuniform, in general. However, nearly

hyperuniform two-phase media may be obtained from

other systems. The results of spinodal decomposition pat-

terns were presented to compare with the ones from

Gaussian random fields. We showed that thresholded

hyperuniform spinodal decomposition spatial patterns are

near effectively hyperuniform. This implies that to gener-

ate a hyperuniform two-phase system from a hyperuniform

scalar field, it is advantageous for the latter to be a bimodal

field with relatively sharp peaks. A thorough study of level

cuts of scalar fields is expected to enable experimentalists

to use state-of-the-art techniques, such as stereolithography

and 3D printing, to synthesize hyperuniform materials with

novel physical properties.

Our study shows that hyperuniformity can emerge in

scalar fields. The quantification of long-wavelength scalar

field fluctuations and the hyperuniformity metric H pro-

vides useful ways to characterize the degree of global order

of scalar fields and hence enables the classification of wide

class of spatial patterns. This work paves the way for inves-

tigators to revisit many patterns found across different dis-

ciplines (e.g., physics, chemistry, biology, and ecology)

and reexamine them under the hyperuniformity lens. It is

expected that such future work should enable one to gain

new insights about the general mechanisms that lead to

hyperuniformity as well as expand experimental capabili-

ties to make large samples of new classes of hyperuniform

materials.
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APPENDIX A: GENERALIZED CAHN-HILLIARD
EQUATIONS AND HYPERUNIFORMITY

Here, we consider generalized Cahn-Hilliard-type equa-

tions and propose some open questions with regard to gener-

ating hyperuniform random scalar fields.

In Sec. III, the free energy density of the Cahn-Hilliard

equation can be defined as a functional, i.e.,

q cð Þ ¼ 1

4
c2 � 1ð Þ2 þ c

2
jrcj2: (A1)

It is clear that c¼61 are two energy minima of
1
4

c2 � 1ð Þ2. Physically, the form of this functional can be

seen as the direct result of the Ginzburg-Landau theory with

certain symmetries. However, we can use other forms of f(c),

which gives the free energy density

q cð Þ ¼ f cð Þ þ c
2
jrcj2: (A2)

And the time evolution equation will be

@c

@t
¼ Dr2 f 0 cð Þ � cr2c

� �
: (A3)

As a simple example, we can use f cð Þ ¼ 1
8

c2 � 1ð Þ4,

which retains two minima as the original one. Follow the

same set-up, we can observe the time evolution of the sys-

tem started from the random initial condition. The result is

shown in Fig. 15. The hyperuniformity metric H is larger

than 10�3, but the spectral density does have a trend that

goes to zero. One can easily come up with many different

forms of f(c), and it is of interest to see if the dynamics will

give rise to hyperuniform or even stealthy random scalar

fields.
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APPENDIX B: TOY “POLYCRYSTAL” MODEL

Some detailed results of the toy “polycrystal” model

introduced in Sec. IV are presented here. For illustration

purposes, we consider here a 1000
 1000 “polycrystal”

consists of 100 subsystems, and the subsystems are of

equal size 100
 100. The pixels are assigned a value of

1 or 0 determined by which phase the pixels are in. The

width of the stripe is 5 pixels and then the characteristic

wavelength is 10 pixels. We compare the spectral density

of this system with the one directed generated by the

Swift-Hohenberg equation at t¼ 100 000 with the same

system size and characteristic wavelength, which means

that k0 is chosen to be 2p/10. In order to compare pat-

terns generated by the Swift-Hohenberg equation with

the toy “polycrystal” model, all patterns are thresholded

at the value of 0 to convert to two-phase systems. We

also use the polycrystal configuration as our initial condi-

tion to see how it evolves under the Swift-Hohenberg

equation. We stop these process at t¼ 1 000 000 and find

that the originally linear stripes become distorted and the

defects at the boundaries between different subsystems

disappear, and stripes in adjacent subsystems connect

with each other at the boundaries (see Fig. 16). We show

the comparison of the spectral densities of the three sys-

tems mentioned above in Fig. 17. Note that the spectral

densities of our toy model resemble the ones of the

Swift-Hohenberg equation, suggesting that the model is a

good description of generated patterns. The higher peak

of the pattern modified by the Swift-Hohenberg equation

demonstrates that the dynamics helps reduce the defects

at the boundaries and as a consequence the system

becomes more ordered.

APPENDIX C: EXAMPLES OF AUTOCOVARIANCE
FUNCTIONS AND VOLUME INTEGRALS OF THEIR
POWERS

In Sec. V A, we proved that the hyperuniformity sum

rule for two-phase media (16) derived from thresholding

hyperuniform Gaussian random fields generally does not

hold. We show this by expanding vV(r) as a series of w(r)

and show that the volume integral of each term generally

gives positive contributions because the higher-order powers

of w are shifted to the left such that they satisfy the inequal-

ity (39).

FIG. 15. (a) The scalar field at t¼ 100 000 from the time evolution of Eq.

(A3). (b) The corresponding angular averaged spectral density of (a).

FIG. 16. The system under the evolution of the Swift-Hohenberg equation

with k0¼ 2p/10 at t¼ 1 000 000 using the “polycrystal” initial condition. A

500
 500 portion is shown here.

FIG. 17. The comparison of spectral densities of three two-phase systems.

The green one is of the toy “polycrystal” model. The red one is from thresh-

olding a typical pattern generated by the Swift-Hohenberg equation with

k0¼ 2p/10 at t¼ 100 000. The blue one is from thresholding the pattern

under the evolution of the Swift-Hohenberg equation of k0¼ 2p/10 at

t¼ 1 000 000 using the “polycrystal” initial condition. The thresholds for the

latter two cases are both zero.
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Here, we illustrate these properties by considering two

explicit realizable hyperuniform Gaussian autocovariance

function in three dimensions, one of which is a damped-

oscillating function

w1 rð Þ ¼
ffiffiffi
2
p

exp �rð Þcos r � p
4

� �
; (C1)

and the other function with a single zero that decays to zero

with the power law 1/r4

w2 rð Þ ¼ 4

3 r þ 1ð Þ5
� 1

3 r þ 1ð Þ4
: (C2)

In Fig. 18, we show the plots of both functions and their 2nd

to 5th powers.

Although these autocovariance functions have distinctly

different properties, it is clear that these higher powers are

skewed to the left and the net positive contribution of the vol-

ume integral is larger than that of the volume integral of w(r),
which is identically zero. As expected, the volume integrals of

these higher powers are all positive; specifically,
Ð
w2

1 rð Þdr

¼5p=4;
Ð
w3

1 rð Þdr¼2032p=3375;
Ð
w4

1 rð Þdr¼3033p=8000;Ð
w5

1 rð Þdr¼2831200p=10793861;
Ð
w2

2 rð Þdr¼32p=2835;Ð
w3

2 rð Þdr¼3392p=1216215;
Ð
w4

2 rð Þdr¼8458p=695020095,

and
Ð
w5

2 rð Þdr¼59264p=113730561.
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