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1.  Introduction

There are uncountably many, physically distinct quasicrystals, 
which have the same symmetry, same fundamental repeating 
units (e.g. tiles, clusters of atoms or molecules), and same 
support for their diffraction patterns, but which have different 
space-filling arrangements of the repeating units and different 
peak intensities for their diffraction patterns [1–4]. These 
distinct quasicrystals are said to belong to different local 
isomorphism (LI) classes. All quasicrystals—and hence all 
LI classes—have long-wavelength density fluctuations that, 
like crystals and special amorphous systems, are suppressed 
relative to typical structurally disordered systems; this large-
scale structural property is known as hyperuniformity [5–7]. 
Whether the degree of hyperuniformity, as measured by the 
leading coefficient of the number variance (defined below), 
varies with LI class is an open question. If it does vary, then 
it would be of interest to understand, first, what specific 

structural properties of an LI class determine the degree of 
hyperuniformity and, second, how these structural properties 
affect the physical properties.

On one hand, one might think the degree of hyperuni-
formity would not vary with LI class, given what different LI 
classes have in common, including how similar they are in 
their construction. With the direct projection method, different 
LI classes can be generated using an acceptance window that 
has the same shape and orientation to select a subset of points 
from the same hypercubic lattice that project onto the same 
projection space. Their construction differs only in the posi-
tion of the acceptance window in the direction orthogonal to 
the projection space.

On the other hand, one might think the degree of hype-
runiformity would vary with LI class, with the following rea-
soning: Changing the decoration of the fundamental unit cell 
of crystals affects the degree of hyperuniformity. (This can be 
seen, e.g. with the triangular, kagome and honeycomb crystals 
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[5, 6].) Although different LI classes have identical funda-
mental repeating units (e.g. tiles in the case of quasicrystal 
tesselations) and identical Bragg peak positions, their diffrac-
tion patterns have different scattering intensities (similar to 
what occurs by changing the decoration of the unit cell in a 
crystal pattern). Also, with the direct projection method, while 
the acceptance window is the same for the different LI classes, 
when the hypercubic lattice points are projected into the space 
that includes the acceptance window, they are confined to 
planes that cut the acceptance window in different ways for 
different LI classes.

In this paper, we will provide clear evidence showing the 
latter intuition—that the degree of hyperuniformity varies 
with LI class—is correct. We will study a continuous set of LI 
classes of two-dimensional, pentagonal quasicrystal tilings, 
which can be obtained as duals to a multigrid composed of five 
overlapping sets of periodically spaced lines or as direct pro-
jections from a five-dimensional hypercubic lattice [3, 8, 9]. 
The set of tilings includes a continuum of configurations with 
five-fold symmetry and discrete instances with ten-fold sym-
metry, which includes the Penrose tiling [10]. Examples from 
different LI classes are shown in figure  1. In determining 
their degree of hyperuniformity, we will treat the quasicrystal 
tilings as point patterns, with points at the vertices of the tiles.

The notion of hyperuniformity can be formulated as fol-
lows: Given a point pattern in d-dimensional Euclidean 
space Rd, we let ( )N R x; 0  be the number of points within 
a hyperspherical window of radius R with center at posi-
tion x0, which is a random variable. For a fixed R, we let 

( ) ⟨ ( )⟩ ⟨ ( )⟩σ ≡ −R N R N R2 2 2 be the number variance associated 
with this random variable. For typical disordered systems, 

( )σ R2  asymptotically follows a volume law ( )σ ∼R Rd2 . A 
system is said to be hyperuniform if ( )σ R2  grows more slowly 
than the volume of the window, i.e. ( )σ ∼ αR R2  where α< d. 
All ideal crystals and many quasicrystals are hyperuniform 
with α = −d 1 [5, 6, 11], as are special disordered systems 
(a recent review of hyperuniform disordered systems can be 
found in [7]).

Our numerical results suggest that the particular quasi
crystal tilings studied here are also hyperuniform with 
α = −d 1, implying their local number variance has the 
asymptotic behavior [5, 6]

( ) ( ) ( )σ ∼Λ +R R R o R ,2� (1)

where ( )Λ R  is a bounded function that fluctuates around some 
average value, and o(R) denotes terms of lower order than R. 
We therefore conjecture that the same holds for the entire con-
tinuous set of LI classes explored in this paper. It is useful to 
average out the small-scale variations in ( )Λ R  and consider 
the running (cumulative moving) average ( )Λ R  [12] and the 
global average ( )Λ ∞  [5, 6], which are defined as follows:

( ) ( )∫Λ ≡ Λ ′ ′R
R

R R
1

d ,
R

0
� (2)

and

( ) ( )
→

Λ ∞ ≡ Λ
∞

Rlim .
R

� (3)

In figure  2, we show ( )Λ R  (purple), ( )Λ R  (red), and ( )Λ ∞  
(black, dashed) for the three tilings in figure 1. Following [5] 
and [6], we shall use ( )Λ ∞  to characterize the degree of hype-
runiformity of a given system.

In this paper, we will examine how ( )Λ ∞  varies with LI 
class and why. We begin in section 2 by describing how we 
construct quasicrystals and establishing some terminology. 
Section  3 details our numerical methods for determining 

( )Λ ∞ . Finally, in section 4, we present and discuss our main 

Figure 1.  Tilings from three different LI classes. The Penrose tiling 
is shown at the top. From top to bottom, they correspond to γ = 0, 
γ = 0.2, and γ = 0.5. Though all are constructed from the same fat 
(orange) and skinny (violet) tiles, they differ in their distribution 
of vertex environments. The ST vertex is absent in the γ = 0 and 
γ = 0.2 LI classes. The M vertex is absent in the γ = 0 class. (See 
figure 4 for notation and enumeration of the sixteen distinct vertex 
environments.)

Figure 2.  The small-scale function Λ R( ) (purple), running average 
Λ R( ) (red), and global average Λ ∞( ) (dashed black line), as 
defined in the text are shown, calculated for the three tilings in 
figure 1. The running average Λ R( ) and the global average Λ ∞( ) 
are indistinguishable for all but the smallest values of R. The small-
scale function Λ R( ) appears to have bounded variations.
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results, which show that ( )Λ ∞  varies continuously with the LI 
class, has a global minimum at the Penrose LI class, and has 
local minima at a special denumerable subset of LI classes 
known as restorable [13], which means, roughly, that they 
contain a lower variance in their local neighborhoods than do 
nearby LI classes. We also present empirical evidence indi-
cating that the overall trend in ( )Λ ∞  can be attributable to the 
distribution of vertex environments.

2.  Quasicrystals: dual method, local isomorphism, 
and restorability

In this section, we first describe how the two-dimensional 
pentagonal quasicrystals studied in this paper are generated 
via the ‘dual method’. We establish that the LI classes can 
be continuously parameterized by a number γ and define the 
condition for when two LI classes are locally isomorphic. The 
notion of restorability is introduced, which will be useful to 
understand how ( )Λ ∞  varies with γ.

The quasicrystal tilings studied in this paper are the same 
as those generated by the ‘direct projection method’ using a 
rhombic-icosahedron acceptance window to select a subset of 
points from a five-dimensional hypercubic lattice that project 
onto a planar surface, forming the vertices of the tiling. Hence, 
the tilings are referred to as ‘direct projection tilings’ (DPTs) 
[13]. (Further details on both the direct projection method and 
the dual method can be found in [3, 8] and [9].)

The dual method is schematically illustrated in figure 3 and 
briefly reviewed here: A periodic grid is an infinite set of par-
allel, straight lines, with equal spacing between adjacent grid 
lines, labeled by Z∈n  corresponding to their ordinal position 
in the grid. We take here the spacing between adjacent grid 
lines to be one. A periodic pentagrid (shown in figure 3(a)) 
comprises five periodic grids, with the ith grid oriented normal 
to the vector ( / / )π π=r cos 2 i 5, sin 2 i 5i . The displacement γi of 
the ith grid from the origin is called the phase. The penta-
grid partitions space into open regions, each of which can be 
uniquely labeled by a set of five integers ( )≡ …k k kK , , ,0 1 4  
such that, if x is any point within the region, it lies between 

lines ki and ki  +  1 of the ith grid. The dual method maps 
these open regions K to the vertices t of a tiling, according 
to the transformation = ∑ = kt ri i i0

4 . Open regions that share 
an edge are mapped to vertices connected by an edge. The 
tilings so constructed comprise two rhombuses of equal sides 
but with angles of /π2 5 (‘fat’) and /π2 10 (‘skinny’). For all 
DPTs, the ratio of the numbers of fat and skinny tiles equals 

( )/τ = + ≈1 5 2 1.618, the golden ratio. Therefore, the 
corresponding point patterns, with points on the vertices, all 
have the same average number of points per unit area.

Two tilings are said to be locally isomorphic if any con-
figuration of tiles in any finite region from one will occur with 
the same frequency in the other. It can be shown [3] that two 
tilings are locally isomorphic (up to inversion) if, and only if, 
the sum of the phases γ γ≡∑ =i i0

4 , γ γ≡∑′ ′=i i0
4  are related by

γ γ− + = − + ′
1

2

1

2
{ } { }� (4)

where { }γ  denotes the fractional part of γ. An arbitrary γ can 
be mapped to a locally isomorphic γ ′ that lies within the range 
[0,0.5] via

{ }γ γ= − − +′
1

2

1

2
.� (5)

If [ ]γ γ ∈′, 0, 0.5  and γ γ≠ ′, then γ γ ′,  are not locally 
isomorphic.

To understand how ( )Λ ∞  varies with γ, it will be useful 
to characterize the tile configurations of the different LI 
classes. For this, we shall employ the concepts of r-maps and 
r-atlases: Given a tiling, select a vertex and construct a circle 
of radius r centered at that vertex. The collection of all tiles 
that are entirely contained within the circle is called an r-
map. Repeat this for every vertex in the tiling. The resulting 
collection of r-maps is called the r-atlas for that tiling (taking 
out duplicates and configurations equivalent under reflections 
and rotations).

An LI class is said to be restorable if there is some finite 
Rr, called the restorability radius, such that the Rr-atlas 
is unique to that LI class, among all DPTs. A restorable LI 
class γ with restorability radius Rr has the property that its  
Rr-atlas contains the fewest number of Rr-maps, compared to 
LI classes with γ γ δγ= ±′ , in the limit →δγ 0. For DPTs, it 
has been shown that the only restorable LI classes are those 
with γ τ= n , where Z∈n  and ( )/τ = + ≈1 5 2 1.618 is the 
golden ratio [13]. For the γ τ= n  class, Rr is proportional to 
n. That is, as n increases, one must consider all tile configura-
tions out to larger and larger sizes to distinguish the γ τ= n  
class from all other LI classes.

Also useful in our discussion of how ( )Λ ∞  varies with γ 
is the notion of vertex environments. A vertex environment is 
defined to be a collection of tiles sharing a common vertex. Up 
to rotations and reflections, there are sixteen distinct vertex 
environments (shown in figure 4) that can be constructed from 
the skinny and fat rhombuses. Each LI class has a character-
istic distribution of vertex environments [14–16]. The distri-
bution of vertex environments for the different LI classes is 
shown in figure 5.

Figure 3.  Schematic illustration of the dual method, as described in 
the text. (a) Periodic pentagrid, consisting of five grids (overlapping 
sets of periodically spaced lines), each normal to one of the five 
vectors ri (inset). Each grid has been displaced from the origin by a 
finite phase γi. The extent of the 0th phase γ0 is marked. Five open 
regions have been numbered. (b) Tiling obtained by applying the 
dual transformation to the pentagrid in (a). Vertices corresponding 
to the five numbered open regions in (a) are shown.

J. Phys.: Condens. Matter 29 (2017) 204003
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Among all restorable LI classes, the Penrose LI class 
(γ = 0) has the smallest restorability radius. It is also distin-
guished for having the fewest distinct vertex environments.

3.  Determining Λ ∞( )

In this section, we describe how we numerically estimate the 
degree of hyperuniformity ( )Λ ∞ , defined by (3), for the dif-
ferent LI classes.

We first generate a DPT from LI class γ using the dual 
method. This is necessarily a finite portion of the perfect, 
infinite tiling and is not a periodic approximant. Treating the 
tilings as point patterns, with points at the vertices of the tiles, 
we estimate the local number variance ( )σ R2  by, first, counting 
the number of points ( )N R x; i  lying within M circular sampling 
windows of radius R with centers at positions xi ( = …i M1, , ), 
then calculating the variance in these counts as follows:

( ) ( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑σ = −

= =

R
M

N R
M

N Rx x
1

;
1

; .
i

M

i
i

M

i
2

1

2
2

1

2

� (6)

This is repeated for a set of radii Ri, uniformly distributed 
between Rmin and Rmax.

The window centers xi are uniformly distributed within a 
circular region of radius Rmax about the center of mass of the 
quasicrystal point pattern. The fiducial area, which contains 
all points that can be sampled, is a circular region about the 
center of mass of radius R2 max. The DPT must be sufficiently 
large to contain within its boundaries this fiducial area. (We 
have found that a sufficiently large DPT can be generated 
from a pentagrid containing /R a2 max  grid lines per grid.)

We calculate the running average ( )Λ R  by using a trape-
zoidal rule to numerically integrate (2) up to Rmax:

( ) ∑
λ λ

Λ ≡
−

+
∆

=

−
R

R R
R

1

2
,i

i j

i
j j

j
min 2

1
� (7)

where ( )/λ σ≡ R Rj j j
2  and ∆ ≡ − −R R Rj j j 1. Our estimate of the 

global average ( )Λ ∞  is obtained by fitting ( )Λ Ri  to the two-
parameter curve

( ) ( ) /Λ = Λ ∞ +R C R� (8)

where C is a second free parameter. (Using an F-test and a 
comparison of residual sum of squares, we determined that 
the C/R subleading term is a better fit than (i) no subleading 
term (C  =  0), (ii) a subleading term ( )/C R Rlog , and (iii) a 
subleading term C/R2.)

As a test of our procedure, we evaluate ( )Λ ∞ , varying the 
upper integration limit Rmax, for different crystal point pat-
terns: kagome, honeycomb, square, and triangle lattices. The 
lattice spacings have been chosen so that the number of points 
per unit area is one. For each crystal point pattern, the window 
centers are chosen to be uniformly distributed within the unit 
cell. These estimates are shown in figure  6, with the ideal 
values computed in [5] and [6] overlaid in dashed lines. Our 

Figure 4.  The sixteen distinct vertex environments, constructed from fat (orange) and skinny (violet) tiles. The Voronoi areas are outlined 
in dashed, red lines. Notation follows that of [8, 9] and [14].

Figure 5.  Frequencies F of the sixteen vertex environments, which 
are shown in figure 4, versus LI class γ. The lower portion of the 
top panel is magnified in the bottom panel. Dashed vertical lines 
mark γ≈ 0.236, 0.382, 0.472, which correspond to γ τ τ τ= 2 , , 4 ; at 
these values of γ (and at γ = 0), certain vertex environments appear 
or disappear. Frequencies were calculated in [15] but have been 
independently re-calculated here.

J. Phys.: Condens. Matter 29 (2017) 204003
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procedure approaches an accuracy that is within 0.1% of the 
ideal values for �R 27max  for the triangle and square lattices 
and �R 35max  for the honeycomb and kagome crystals.

We perform a similar test with the quasicrystal point pat-
terns. In figure 7, we show, for three representative LI classes, 
our estimates of ( )Λ ∞  as the upper integration limit Rmax 
is varied. Comparing with ( )Λ ∞  evaluated at =R 400max  
(dashed lines), the percentage difference is less than 0.1% for 

�R 100max  for the γ = 0 class and �R 150max  for γ = 0.2 and 
γ = 0.5. We also tested how ( )Λ ∞  varies with the number of 
windows M and found that, comparing with =M 10 000, the 
percentage difference is less than 0.1% for �M 3500.

For the estimates of ( )Λ ∞  presented in this paper, we used 
the conservative choices of =R 400max  and =M 10 000. 
Moreover, the sampling of LI classes γ must be treated with 
care, because random sampling would miss features that occur 
at the discrete set of points γ τ= n . We do a uniform sampling 
from 0 to 0.5 in intervals of 0.005, in addition to sampling τn  
for n from 1 to 15. The values of γ are mapped to equivalent 
values lying within the interval [0,0.5] using (5).

4.  Results and discussion

Our calculation of ( )Λ ∞  versus γ for pentagonal DPTs is 
shown in figure 8. There are noteworthy features in ( )Λ ∞ , as 
a function of γ, that may not have been expected. The func-
tion appears to be continuous and increases on average. It also 
appears to have a global minimum at the Penrose LI class 
(γ = 0), a global maximum at γ = 0.5, and local minima 
at the restorable LI classes (γ τ= n ). The local minima are 
cusplike, not smooth. Moreover, the depths of these local 
minima appear to decrease with respect to n. In figure 8, we 
have included a magnified portion of the curve around γ τ= , 
where a finer resolution sampling of γ was performed.

As shown in the upper panel of figure 9, the increasing trend 
of ( )Λ ∞  with γ is already exhibited by =R 2max . This indi-
cates that the trend must be attributable to local geometrical 

features on length scales of order ⩽ 2, given that this estimate 
of ( )Λ ∞  was obtained from information contained in sam-
pling windows with radius ⩽ 2. As shown in the lower panel, 
by =R 16max , the cusp at n  =  1 begins to appear, with more 
cusps appearing as Rmax increases.

To explore the dependence of ( )Λ ∞  on the local geometry 
of the DPTs, we construct their Voronoi tesselations, con-
sidering the vertices as a point pattern. The Voronoi cell of a 
vertex is the region of space within which all points in space 
are closer to that vertex than to any other. Each of the sixteen 
vertex environments in figure 4 has a corresponding Voronoi 
cell (shown in figure 4 as dashed, red lines), with an area that 
we denote by Ai ( )= …i 1, , 16 . The tesselation of space by 
the Voronoi cells is the Voronoi tesselation. The distribution 
of Voronoi cell areas in the Voronoi tesselation quantifies the 
local geometric structure of the point pattern.

We compute the standard deviation σV of the Voronoi cell 
areas as follows:

( )∑σ µ≡ −
=

F A ,V
i

i i V
1

16
2� (9)

where we have used the frequencies Fi of the vertex environ
ments from figure 5, and µ ≡∑ = FAV i i i1

16  is the average Voronoi 
cell area. The normalized standard deviation /σ µV V of the 
areas is shown in figure 10 as a function of γ. We observe that 
the distribution of vertex environments, as characterized by 

/σ µV V, is monotonic with γ and increases with γ in a manner 
similar to ( )Λ ∞  in figure 8, excluding the cusps.

We therefore see two competing effects: the local ordering 
(e.g. as measured by /σ µV V) and the restorability (e.g. as meas-
ured by the restorability radius Rr). The restorability radius is 
a characteristic length scale of the restorable LI classes. It is 
smallest for the Penrose LI class, which has the highest degree 
of hyperuniformity, so one might have expected ( )Λ ∞  to grow 
monotonically with Rr. Instead, we claim that the leading 
effect is the local ordering, which is monotonic with γ. The 

Figure 6.  Estimates of the degree of hyperuniformity Λ ∞( ), as 
the upper integration limit Rmax is varied, for kagome, honeycomb, 
square, and triangle crystal point patterns. The ideal values are 
overlaid in dashed lines (from [5] and [6]).

Figure 7.  Estimates of the degree of hyperuniformity Λ ∞( ), as the 
upper integration limit Rmax is varied, for three quasicrystal point 
patterns. Portions of the corresponding tilings are shown in figure 1. 
Estimates of Λ ∞( ) evaluated at =R 400max  are overlaid in dashed 
lines.

J. Phys.: Condens. Matter 29 (2017) 204003
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deviations from monotonicity with γ (i.e. the depths of the 
cusps) are a subdominant effect that is monotonic with the 
restorability radius. The evidence that the local ordering is the 
dominant factor in determining the degree of hyperuniformity 
is that the value of ( )Λ ∞  is not monotonic in Rr, but, instead, 
is more correlated with γ.

As noted in the Introduction, it had been an open question 
whether the degree of hyperuniformity varies with LI class. 
The results above clearly show the answer is yes. Evidently, 
the repeating units and the symmetry do not, by themselves, 
determine the degree of hyperuniformity—the continuum of 
DPTs studied here are constructed from the same tiles and 
have the same five-fold symmetry (with the exceptions of 
γ = 0 and γ = 0.5, which have ten-fold symmetry, although 
the tilings corresponding to these two special choices of γ also 
have different values of ( )Λ ∞ ). The results also show, for the 
DPTs studied here, that the differences in hyperuniformity 
are largely attributable to local differences in point (or tile) 

Figure 9.  Degree of hyperuniformity Λ ∞( ) evaluated at =R 2max  
(blue, upper panel) and 16 (green, lower panel), overlaid on the 
curve from figure 8, which was evaluated at =R 400max . The curves 
have been rescaled so that Λ ∞( ) at γ = 0 and at γ = 0.5 are set to 0 
and 1, respectively. The dashed vertical line at γ≈ 0.382 marks the 
γ τ=  class.

Figure 10.  Normalized standard deviation σ µV V/  of the Voronoi cell 
areas versus LI class γ.

Figure 8.  Degree of hyperuniformity Λ ∞( ) versus LI class γ. The vertical lines mark the restorable LI classes γ τ τ τ= …, 2 , , 15 , mapped 
to equivalent values lying within the interval [0, 0.5] using (5). Magnified portion around γ τ=  shows the typical structure of the local 
minima. Each point represents an average over ten tilings from the same LI class γ. The error bars represent the standard deviation of the 
estimates of Λ ∞( ). Pentagrids contain 800 grid lines per grid; each tiling contains approximately ×3.5 106 vertices; upper integration limit 

=R 400max  and number of windows =M 10 000.
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configurations and that restorability plays a factor. Our initial 
studies using other tile decorations show qualitatively similar 
results.

A primary question of interest is whether the differing 
degree of hyperuniformity among LI classes has any physical 
consequence, such as on electronic and photonic transport 
properties. This will be the subject of future study.
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