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ABSTRACT In proliferating epithelia of mammalian skin, cells of irregular polygon-like shapes pack into complex, nearly flat
two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to
quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We
find that the pair statistics in direct space (correlation function) and Fourier space (structure factor) of the cell centroids in
the early stages of embryonic development show structural directional dependence (statistical anisotropy), which is a reflection
of the fact that cells are stretched, which promotes uniaxial growth along the epithelial plane. In the late stages, the patterns
tend toward statistically isotropic states, as cells attain global polarization and epidermal growth shifts to produce the skin’s
outer stratified layers. We construct a minimalist four-component statistical-mechanical model involving effective isotropic
pair interactions consisting of hard-core repulsion and extra short-range soft-core repulsion beyond the hard core, whose length
scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both
direct and Fourier spaces. By doing this, the parameters are biologically constrained. In contrast with many vertex-based
models, our statistical-mechanical model does not explicitly incorporate information about the cell shapes and interfacial energy
between cells; nonetheless, our model predicts essentially the same polygonal shape distribution and size disparity of cells
found in experiments, as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are
able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. The array
of structural descriptors that we deploy enable us to distinguish between normal, mechanically deformed, and pathological skin
tissues. Our statistical-mechanical model enables one to generate tissue microstructure at will for further analysis. We also
discuss ways in which our model might be extended to better understand morphogenesis (in particular the emergence of planar
cell polarity), wound healing, and disease-progression processes in skin, and how it could be applied to the design of synthetic
tissues.

INTRODUCTION
Particle packing problems have great relevance not only in
condensed-matter physics and mathematics (1–4), but also
in many biological contexts (5–13). Such examples include
molecular ‘‘crowding’’ within cells (5,6), packings of living
cells that comprise a variety of tissues (7–9), and competi-
tive settlement of territories by animals (10), to name a
few. In particular, many biological functions of animal tis-
sues rely on the accurate formation of complex cell-packing
patterns (14). For example, it has been established (9) that
for the avian retinae to sample light efficiently, photore-
ceptor cells pack into exotic disordered ‘‘hyperuniform’’
states (15) in which (normalized) infinite-wavelength den-
sity fluctuations vanish. Disruption of cell packing patterns
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may lead to pathological conditions. For instance, it has
been demonstrated (8) that packings of brain glioma cells
possess the large-scale spatial correlations that are not
observed in packings of benign brain white matter cells.
In healthy cornea, cells pack into a disordered pattern that
is transparent to visible light (16), whereas cornea edema al-
ters the cell-packing pattern, leading to blurry vision (17).

During the last two decades, much work has been devoted
to studying different aspects of epithelial patterns due to
their importance for a variety of biological functions
(14,18–29). Epithelia are layers of cells that line the surfaces
of organs and cover the exterior of the animal body. They
serve as diffusion barriers that separate different physiolog-
ical environments, protect the body from water loss, and
prevent the permeation of toxins and pathogens (30–33).
They play a significant role in many biological processes,
such as embryonic development, organogenesis, homeosta-
sis maintenance, and disease progression (30,33).
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Statistical Mechanics of Skin Patterns
Epithelia can be classified into two categories by thick-
ness: simple epithelia, consisting of one single layer of cells,
and stratified epithelia that have multiple layers (30,33).
Within one layer, epithelia possess an almost flat two-
dimensional structure consisting of space-filling cells with
nearly polygonal shapes (18). Moreover, many epithelia
display planar cell polarity (PCP), where cell polarity and
structural features collectively align across the tissue plane,
as exemplified by the uniform hair follicle alignment in the
mammalian skin (19–22,34,35). PCP is essential in various
processes, such as vertebrate gastrulation, mammalian ear
patterning and hearing, and neural tube closure, to name a
few (21,36–38). In proliferating epidermis, cells pack them-
selves in a complex disordered fashion such that the
epidermis is pliable to deformations (18), which stands in
contrast to those cells with regular hexagonal shapes that
are arranged in an ordered fashion in insect retina and non-
proliferating epithelia (39,40).

Despite the extensive research about epithelia, the under-
lying mechanisms for cells to assemble into complex tissue-
level patterns in epithelia remain poorly understood (14).
For example, in cultured keratinocytes, it is difficult to
reconstruct certain in vivo structural features like PCP
in skin (21). Computational modeling (14,23–25,27–
29,41,42) provides a powerful means to shed light on this
issue due to its relatively low cost and flexibility. In partic-
ular, vertex-based models (14,23,24,43,44) have been exten-
sively employed to investigate epithelial patterns. Such
models generally approximate cells as polygons or poly-
hedra and take into account cell elasticity and surface ten-
sion via certain energy functional forms (14,23,24). These
vertex models attempt to explain the formation of individual
cell shapes and other local properties, such as the coordina-
tion number (the number of near neighbors) and area distri-
butions of cells. Recently there also have been models
(45,46) that treat cell centroids as interacting particles
with biologically motivated cell mechanical terms to inves-
tigate cell motions in biological tissues.

In this work, our goal is to investigate both local and
large-scale correlations of cell centroids in skin by exploit-
ing the machinery of statistical mechanics (2,47–58) to
quantitatively characterize the structure of tissue samples
and treat the cells as interacting entities with effective
pair potentials (9,59–66). Specifically we first acquire histo-
logical images of mouse epidermal patterns in different
stages of embryonic development. We then compute the
pair correlation function and structure factor (48) of the
point configurations associated with the cell centroids in
these patterns. These pair statistics reveal a strong structural
directional dependence (statistical anisotropy) across length
scales at early stages, which is a reflection of the fact that
cells are stretched to promote uniaxial growth (67,68). By
contrast, the cell patterns in the late stages evolve to statis-
tically isotropic states. This switch coincides with the estab-
lishment of global cell polarization and a shift to stratified
growth in the developing epidermis (20,68,69). The pair sta-
tistics that we employ capture the spatial correlations of cell
centroids across length scales that are not reflected by sin-
gle-cell statistics such as cell size and density (70).

We develop a statistical-mechanical model involving
effective pair interactions between the cells that consist
of hard-core repulsion and extra short-range soft-core repul-
sion beyond the hard core, whose length scale is roughly the
same as the hard core. The model parameters are optimized
to match the sample pair statistics in both direct and Fourier
spaces, i.e., pair correlation function, g2ðrÞ, and structure
factor, SðkÞ (defined in Materials and Methods). By doing
this, the parameters are biologically constrained. For
simplicity, we focus on modeling the patterns in late devel-
opmental stages. Generalization of the model to predict
the more complex early-stage highly anisotropic cell
patterning is deferred to a future work. We compute Voronoi
statistics of the simulated configurations. In contrast with
the aforementioned vertex-based models, our statistical-me-
chanical model does not explicitly involve interfacial energy
functionals between cells that dictate the formation of cell
shapes; nonetheless, our model predicts essentially the
same polygonal shape distribution and size disparity of cells
found in experiments as measured by Voronoi statistics.
Moreover, our model is able to match other nontrivial un-
constrained statistics such as the nearest-neighbor statistics
and local number variance that measures density fluctua-
tions of cell centroids across length scales. This is a testa-
ment to the power and, to our knowledge, novelty of the
model. In addition, we find that the point patterns are not hy-
peruniform, which can be attributed to the fact that the skin
must be pliable to deformations. This is to be contrasted
with disordered hyperuniform photoreceptor-cell mosaics
in avian retinae (9), which must be mechanically rigid to
sample light uniformly. The latter situation is consistent
with the fact that disordered hyperuniformity is a property
of a wide class of maximally random jammed states
(58,71–77) that are indeed infinitely rigid. Disordered
hyperuniform systems suppress large-scale density fluctua-
tions like perfect crystals, and yet are statistically isotropic
with no Brag peaks, like liquids or glasses. They can be
considered to be exotic states of matter that lie between
the crystal and liquid states (9,15).

Since the correlations of cell centroids reflect the spatial
distributions of cell nuclei, cytoplasm and membrane
phases, and properties that ultimately affect the biological
functions of the skin, our results should be able to provide
new benchmarks that could be used to distinguish between
normal and pathological skin tissues (78). Moreover, our
statistical-mechanical model enables us to generate tissue
microstructure at will for further analysis, including the
study of other structural and topological features (including
anisotropic cell-packing patterns at the early stage, PCP, and
ordered patterns in nonproliferating tissue, to name a few),
as well as physical properties (including transport, elastic,
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FIGURE 1 Representative disordered epidermal patterns in the basal

layer of mouse skin at early (a) and late (b) stages of embryonic develop-

ment after processing. The anterior-posterior axis runs vertically, and the

medial-lateral axis runs horizontally. There are ~668 and 1085 cells (each

of which has a linear size of ~7 mm) in the early and late stages, respec-

tively. The cell membranes and extracted cell centroids are indicated in

light gray and blue, respectively. The insets show blowups of portions of

the original images, which are edited using Adobe Photoshop software.

To see this figure in color, go online.
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and viscoelastic properties). In addition, there are many
ways in which our statistical-mechanical model might be
extended to enhance our understanding of complex biolog-
ical phenomena and processes in skin (27,67,79,80) and
applied to the design and generation of artificial (or syn-
thetic) tissues, which we will discuss in detail later.

The rest of the article is organized as follows: in Materials
and Methods, we first introduce the procedures to obtain and
process images of epidermal patterns in mouse skin in
different stages of embryonic development. We then intro-
duce the definitions of the various structural descriptors
employed in this work. In Results and Discussion, we
employ these structural descriptors to characterize the
evolving epidermal patterns and construct a computational
model of the point patterns derived from the cell centroids
in the late-stage experimental sample. In Conclusions, we
offer concluding remarks, and propose directions in which
our work can be extended.
MATERIALS AND METHODS

Whole-mount immunostaining and image
acquisition

All experiments were performed on E12.5 or E14.5 embryos obtained by

mating wild-type C57BL/6J (Jackson Laboratory, Bar Harbor, ME) mice.

Mice were handled and housed according to the approved Institutional

Animal Care and Use Committee protocols of Princeton University. For

immunostaining, E12.5 and E14.5 embryos were dissected in phosphate-

buffered saline (PBS) and fixed for 1 h at room temperature in 4% parafor-

maldehyde. Dissected backskins were permeabilized and blocked with

PBS, 0:2% Triton X-100, 2:5% normal goat serum, and 2:5% normal

donkey serum for 1 h at room temperature. Primary antibodies were incu-

bated overnight at 4�C. Samples were then washed three times for 30 min in

PBT (0:2% Triton X-100 diluted with PBS) at room temperature. Second-

ary antibodies, Phalloidin, and Hoechst were incubated for 3 h at room tem-

perature. Samples were washed in PBS at room temperature and mounted in

Fluoro-Gel mounting medium (cat. no. 17985-30, ElectronMicroscopy Sci-

ences, Hatfield, PA). The following antibodies were used for immunofluo-

rescence: rat anti-E-cadherin (DECMA-1, 1:500; cat. no. MA1-25160,

Thermo Fisher Scientific/Pierce Biotechnology, Waltham, MA), rhodamine

phalloidin (1:1000, Cytoskeleton, Denver, CO) and secondary antibodies

conjugated to AF-488 or AF-647 (1:1000; Invitrogen, Carlsbad, CA).

Immunostained samples were imaged using an inverted Nikon A1R-Si

confocal microscope, on a Nikon Eclipse Ti stand (Nikon Instruments,

Tokyo, Japan) equipped with a GaASP detector. Images were acquired

with a 40� oil objective (NA 1.3).
Image processing and extraction of cell centroids

The Packing Analyzer Software package (22) is employed to identify all the

cell membranes and then our in-house code (81) to ‘‘dilate’’ the membrane

of each cell, i.e., convert all the intracellular pixels bordering the cell mem-

brane into ‘‘membrane’’ pixels. This process separates the intracellular re-

gions of each cell from one another, allowing us to determine the position of

each individual cell centroid (Fig. 1, blue dots) by averaging over the posi-

tions of the pixels of the associated intracellular region. The pixels corre-

sponding to the intracellular region of a cell form a ‘‘cluster,’’ which is

connected by a path entirely in the intracellular region of that cell and iden-

tified using the ‘‘burning’’ algorithm (82,83). Note that the epidermis is

slightly curved and the cells are not always in exactly the same plane, so
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pairs of epidermal cells, when they are projected onto the same plane in

the imaging process, sometimes appear to be closer to one another than

they are in actuality. The cell membranes are sometimes blurred due to

noises present in the labeling and imaging processes, leading to errors in

the subsequent step of identifying cell membranes. These effects introduce

small errors in the final extracted positions of the cell centroids but do not

affect the overall statistics, especially on large length scales. In addition,

although the experimentally obtained tissue samples are relatively large, pe-

riodic boundary conditions are applied to the point patterns associated with

the cell centroids to minimize boundary effects and approximate the infinite

system.
Structural descriptors of epidermal patterns

For point configurations derived from the epidermal cell centroids under pe-

riodic boundary conditions, we consider a variety of different types of

lower-order correlation functions that are sensitive in picking up structural

information across length scales (15,48,58,73,77,84). A basic quantity of a

point configuration is the pair correlation function, g2ðrÞ, which is propor-

tional to the probability density function of finding two centers separated by

the vector displacement, r (48). In practice, g2ðrÞ is computed via the

relation

g2ðrÞ ¼ hNðrÞi
rrDrDq

; (1)

where hNðrÞi is the average number of particle centers that fall into the area

element at a vector displacement, r, from a central particle center (arbi-
trarily selected and averaged over all particle centers in the system),

rDrDq is the finite differential area element (r is the distance from the

origin and q is the polar angle), and r is the number density of the point

patterns (48,75). The structure factor, SðkÞ, is the Fourier counterpart,

defined by

SðkÞ ¼ 1þ r~hðkÞ; (2)

where ~hðkÞ is the Fourier transform of the total correlation function,

hðrÞ ¼ g ðrÞ � 1 (48), and k is the wavevector. The physical reason why
2

one subtracts unity from g2 to get the total correlation, hðrÞ, is because in
a disordered system without any long-range order, hðrÞ will tend to zero

for large r. Therefore, when hðrÞ deviates from zero, it is a measure of cor-

relations, both positive and negative. Note that Eq. 2 implies that the

forward-scattering contribution to the diffraction pattern is omitted. For
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computational purposes, the structure factor, SðkÞ, can be obtained directly
from the particle positions, rj, i.e.,

SðkÞ ¼ 1

N

�����
XN
j¼ 1

exp
�
ik , rj

� �����
2

ðks0Þ; (3)

where N is the total number of points in the system (58,75,76). The trivial

forward scattering contribution ðk ¼ 0Þ in Eq. 3 is omitted, which makes
Eq. 3 completely consistent with Eq. 2 in the ergodic infinite-system limit.

For infinite point configurations in d-dimensional Euclidean space, they are

hyperuniform if

lim
k/0

SðkÞ ¼ 0; (4)

which implies that (normalized) infinite-wavelength density fluctuations of

the system vanish (15,72,73,84). In general, the spectral density, ~cðkÞ,

instead of SðkÞ should be employed to characterize systems with particle-

size disparity (73,74); however, in the case presented here, the size contrast

between different cells is relatively small and we avoid making assumptions

about cell sizes and shapes by using SðkÞ.
To characterize local topology and size disparity of epidermal cells, we

construct Voronoi tessellations of the point patterns associated with the

cell centroids and compute statistics of the Voronoi cells (48). A Voronoi

cell is the region of space closer to a point than to any other point in the

patterns (48). A Voronoi tessellation is a tessellation of the space by the

Voronoi cells (48). The number of neighbors, n, of a Voronoi cell is a

discrete topological property of an epidermal cell, and the area of a Voronoi

cell, A, quantifies the size of an epidermal cell. The normalized standard

deviation, cnhsn=hni, of n quantifies the local topology disparity of

epidermal cells, where sn and hni are the standard deviation and ensemble

average of n (85–87). The normalized standard deviation, cAhsA=hAi, of A
quantifies the size disparity of epidermal cells, where sA and hAi are the

standard deviation and ensemble average of A (85–87).

We also utilize the following three structural descriptors to characterize

the density fluctuations of cell centroids and spatial correlations between

nearest neighbors:

� s2ðRÞ: local number variance h variance of the number of particle cen-

ters that fall into the observation window with radius R randomly placed

in the system;

� HPðrÞ: nearest-neighbor probability density function h probability den-

sity of finding the center of the nearest particle at a distance between r

and r þ dr from a given particle center; and

� EPðrÞ: exclusion probabilityh probability of finding a circular cavity of

radius r centered at some arbitrary particle center empty of other particle

centers.

To compute s2ðRÞ, we randomly place circular observation windows

with radius R in the system under the constraint that the windows should

fall entirely within the simulation box to avoid boundary artifacts

(9,15,84). Also, the largest radius of the window that one can sample

must be smaller than half of the box length; otherwise, density fluctua-

tions are artificially diminished (77). We count the number of cell

centroids, NðRÞ, that fall into the observation window, which is a

random variable. The variance associated with NðRÞ is denoted by

s2ðRÞhhNðRÞ2i � hNðRÞi2, which measure local density fluctuations of

cell centroids within a window of radius R. We note that s2ðRÞ is another
quantity that can be employed to check hyperuniformity. For two-

dimensional disordered hyperuniform systems, s2ðRÞ grows more slowly

than the area of the circular observation window, i.e., more slowly than

R2 (15,58). To compute HPðrÞ, we bin the distances between each cell

and its nearest neighbor and divide the number in each bin by the total

number of cells and the bin size (8,48). From HPðrÞ, we can compute

the associated complementary cumulative distribution function, EpðrÞ
(8,48), via
EPðrÞ ¼ 1�
Z r

0

HPðxÞdx: (5)

RESULTS AND DISCUSSION

Structural characterization of epidermal patterns

In the early stages, cells are stretched in the medio-lateral
direction (the horizontal direction in Fig. 1), which pro-
motes uniaxial growth by biasing cell divisions and cell re-
arrangements along the medio-lateral axis (68). These
events ultimately relax tissue anisotropy, and at later
stages, cells become more isotropic (circular) in shape
(68), as seen from Fig. 1. To quantify the degree of
statistical anisotropy and spatial correlations, we employ
the aforementioned directional pair correlation function,
g2ðrÞ, and the structure factor, SðkÞ, as shown in Fig. 2.
We find that the pair statistics of the early-stage patterns
show a strong directional dependence, i.e., statistical
anisotropy. Note that the first peak of g2ðrÞ shifts toward
large r and g2ðrÞ decays to its long-range asymptotic value
of unity more slowly as q increases, where q is the angle
between the sampling and vertical directions. The blue re-
gion in the vicinity of the origin, where SðkÞ is small, pos-
sesses an ‘‘elliptical’’ shape, implying larger density
fluctuations on large scales in the horizontal direction.
This anisotropy is due to the fact that cells at this stage
are stretched along the medial-lateral axis and thus
possess larger exclusion volumes (9,88) in the horizontal
direction. By contrast, both g2ðrÞ and SðkÞ in the late
stages of development show no directional dependence,
indicating that the corresponding point patterns of
epidermal cells are statistically isotropic. This change
from anisotropy to isotropy in the latter stages reflects
the tissue relaxation resulting from oriented cell divisions,
and provides a quantitative characterization of the morpho-
logical events that accompany global cell polarization as
the epidermis becomes increasingly planar polarized
(20,68) and shifts from a program of planar, uniaxial
growth to stratification (68,69).
Statistical-mechanical model of late-stage
epidermal patterns

Using the aforementioned structural information revealed
by the pair statistics, we embark on developing a statisti-
cal-mechanical model that accounts for packing effects.
A packing in d-dimensional Euclidean space, Rd , is tradi-
tionally defined as a large collection of nonoverlapping solid
objects (particles). Here, we generalize the concept to allow
for overlap of cells to account for the deformability of
cell membranes (89). Our first goal is to devise a statisti-
cal-mechanical model of cells interacting via a particular
choice of parameterized effective pair potential functions
Biophysical Journal 111, 2534–2545, December 6, 2016 2537



FIGURE 2 (a and b) Directional pair correlation

function, g2ðrÞ, and structure factor, SðkÞ, of

epidermal cell centroids in the early stages. Note

that the first peak of g2ðrÞ shifts toward large r

and that g2ðrÞ decays to its long-range asymptotic

value of unity more slowly as q increases, where q

is the angle between the sampling and vertical direc-

tions. The blue region in the vicinity of the origin,

where SðkÞ is small, possesses an ‘‘elliptical’’ shape,

implying larger density fluctuations on large scales

in the horizontal direction. This anisotropy is due

to the apparent ‘‘stretching’’ of the cells and the

associated larger exclusion volume in the horizontal

direction. (c and d) Directional pair correlation

function, g2ðrÞ, and structure factor, SðkÞ, of

epidermal cell centroids in the late stages, which

show no directional dependence. To see this figure

in color, go online.
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with parameters optimized to generate patterns that best fit
the experimental configuration of cell centroids at late
developmental stages. We note that our late-stage statisti-
cal-mechanical model can be generalized to predict the
more complex early-stage highly anisotropic cell patterning
by tuning the interactions between cells, but such studies are
deferred to a future work.

We first measure the inradius distribution of the Voronoi
cells associated with the epidermal cell centroids and use
this as the starting point to estimate the size distribution
of particles in our model. Then we use the specific func-
tional forms of the measured pair statistics (g2ðrÞ and
SðkÞ) to suggest a class of effective cell-cell interactions
that consist of two isotropic parts: a hard-core repulsion
and a soft-core repulsion beyond the hard core, with a cut-
off that is roughly of the same scale as the hard core (see
Fig. 3). From a qualitative observation of the cells, the nu-
cleus is nearly always circular to oval, whereas the cyto-
plasm and membrane can be stretched and shaped into
countless configurations. Therefore, it seems reasonable
to assume that hard-core and soft-core interactions mimic
nucleus and cytoplasm/membrane. Moreover, we expect
that the larger is the area of the stiffer part of a cell, the
larger is the range of the effective hard core of the cell.
In addition, we expect that the ratio of the soft-core and
hard-core radii is qualitatively proportional to the ratio of
2538 Biophysical Journal 111, 2534–2545, December 6, 2016
the area of the cell and that of the stiffer part of the cell.
It is important to note that the latter quantity is experimen-
tally measurable. However, we stress that these are effec-
tive interactions and the range of the hard-core repulsion
is not necessarily the same as the range of the stiffer part
of the cell. Specifically, the strength of the hard-core repul-
sion is characterized by the radius ai of a hard-disk exclu-
sion region associated with a cell type i. This interaction
imposes a nonoverlap constraint such that the distance be-
tween cells i and j cannot be smaller than the sum of their
hard-core radii, which mimics the physical cell-packing
constraint. The effective packing fraction, f, of the cells
(i.e., the fraction of space covered by the hard-disk exclu-
sion regions of cells), is related to the size distribution of
the cells via

f ¼ 1

As

X
i

NipðaiÞ2; (6)

where As is the area of the system, and Ni and ai are the

number and radius of cells of type i, respectively. Note
that high f generally corresponds to low cell elasticity
and motility. The range of the soft core is proportional to
that of the hard core with the coefficient a> 1 for every
cell. Moreover, the pair potential vðrijÞ between cells i
and j is given by



v
�
rij
� ¼

8>>>><
>>>>:

N; rij%ai þ aj

ε

"
�
�
rij � ai � aj

r�1=2

�b

þ
	ða� 1Þ�ai þ aj

�
r�1=2


b#
; ai þ aj%rij%a

�
ai þ aj

�
0; rijRa

�
ai þ aj

�
(7)
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where rij is the distance between cells i and j, ai and aj are
the hard-core radii of cells i and j, r is the number density
of the simulated system, and parameters a> 1, b> 0, and E
set the scale of the interaction energy. The energy of
the system, E, is the sum of these effective pairwise repul-
sions, i.e.,

E ¼
X
i < j

v
�
rij
�
: (8)

We consider the inradius of the Voronoi cell associated with

an epidermal cell centroid (see Fig. 4 a) as a rough measure
of the actual size of the epidermal cell. We exclude cells
within a distance of the sample boundary, d%0:1L (where
L is the linear size of the sample), to avoid boundary arti-
facts and compute the inradius distribution of Voronoi cells.
We find that the distribution can be approximated well by a
normal distribution with a minimum cutoff, as shown in
FIGURE 3 Illustration of the hard- and soft-core interactions in a system

containing cells with different sizes. The solid black disks and larger

concentric red (or light gray in the print version) circles illustrate the

hard- and soft-core repulsions, respectively. The hard-core radius of cell i

is denoted by ai. To see this figure in color, go online.
Fig. 4 b. Therefore, we employ a multicomponent system
with a finite number of cell types and a cell-size distribution
that approaches the normal distribution with a minimum
cutoff as a starting point. We gradually increase the number
of cell types in the system until we determine the minimal
number of components that predicts the experimental pat-
terns. We refer to this as a ‘‘minimalist’’ statistical mechan-
ical model.

The parameters of the potential are optimized by mini-
mizing the following objective function:

D ¼
X
r

½g2ðrÞ � g2ðrÞ�2 þ
X
k

�
SðkÞ � SðkÞ�2; (9)

where g2ðrÞ and SðkÞ are the pair statistics of the simulated

point patterns determined via Monte Carlo methods from
the aforementioned interactions at any point in the simula-
tion, and g2ðrÞ and SðkÞ are the corresponding experimen-
tally measured functions (9). We note that, in principle,
for infinite systems, the direct-space term and the Fourier-
space term in Eq. 9 are equal by Parseval’s theorem (90).
However, this is not true for finite-system simulations,
where the summations over r and k are cut off at certain
values. By including both terms in the objective function,
we are able to capture both short and large-scale correlations
in the experimental sample. The Monte Carlo algorithm
(similar to the one in (9)) that we employ to generate
different point patterns, which involves iterating ‘‘growth’’
and ‘‘equilibration’’ steps, works as follows:

1) Initialization. In the beginning of the simulation, cells
are generated in a square simulation box using the
random-sequential-addition (RSA) process (2) with a
prescribed size distribution. Specifically, the cells are
randomly, irreversibly, and sequentially added into the
system under the constraint that their hard cores do not
overlap with the hard cores of the cells already in the sys-
tem (2). The initial packing fraction of epidermal cells,
fI, is ~50% of the RSA saturation density (2).

2) Growth. At each stage n, the radius ai of each cell is
increased by the same small fractional amount such
that no pairs of hard cores of cells overlap. This leads
to an increase of the packing fraction, fn, at this
stage by an amount of ~1–3%. Then the cells are
allowed to randomly move in a direction and prescribed
maximal distance such that no pairs of hard cores overlap
Biophysical Journal 111, 2534–2545, December 6, 2016 2539



FIGURE 4 (a) Illustration of Voronoi cells of

the epidermal patterns at the late stage of embry-

onic development and their associated incircles.

The inset shows a blowup of a portion of the orig-

inal image, which is edited using Adobe Photo-

shop software. (b) Inradius distribution of the

Voronoi cells shown in (a). Cells within a distance

of the sample boundary d%0:1L (where L is the

linear size of the sample) are excluded to avoid

boundary artifacts when calculating the distribu-

tion, and these cells are not shown in (a). Note

that the inradius distribution can be well approxi-

mated by a normal distribution with a minimum

cutoff. To see this figure in color, go online.
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for a certain number of movements (z1000 per cell).
Note that in this ‘‘growth’’ step, the extra soft repulsions
between cells are turned off.

3) Equilibration. At the end of the ‘‘growth’’ step, the soft
interactions are then turned on, and the system is allowed
to equilibrate at fictitious ‘‘temperature’’ T subject to
nonoverlap conditions. Specifically, each cell is allowed
to randomly move within a prescribed maximal distance
from its old position, and the trial move is accepted with
the probability

paccðold/newÞ ¼ min

�
1; exp

�
� Enew � Eold

kBT

��
; (10)

where Eold and Enew are the energies of the system before

and after the trial move, as defined in Eq. 8.

4) Statistics. After the equilibration process, structural sta-
tistics of the resulting configuration of cell centroids are
obtained and compared to the corresponding experi-
mental data.

5) The growth and equilibration steps described in items 2
and 3, respectively, are repeated until fn reaches a pre-
scribed value fF. Specifically, the configuration obtained
by equilibration at stage n is used as the starting point for
the growth step at stage nþ 1.
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We optimize the parameters of the potential, fictitious
‘‘temperature’’ T of the system, size distribution, and final
packing fraction, fF, of the cells to generate equilibrium
‘‘liquid’’ configurations that minimize D, i.e., that best
match the functions g2ðrÞ and SðkÞ. We find that a four-
component system with N1=N2=N3=N4 ¼ 324 : 437 : 265 :
59 and a1=a2=a3=a4 ¼ 0:78 : 1:0 : 1:22 : 1:44 generates
the best patterns, where Ni and ai are the number and radius,
respectively, of cells of type i. We note that further
increasing the number of components in the system beyond
this four-component system does not significantly improve
the results. We find the corresponding optimized parameter
values to be a ¼ 1:5, b ¼ 2:0, kBT=ε ¼ 0:054, and
fF ¼ 0:485, where kB is the Boltzmann constant.

Fig. 5 shows the experimentally measured g2ðrÞ and SðkÞ
and those of the final simulated point patterns (averaged
over five configurations) with the minimal Dmin < 0:10. As
one can see, our statistical-mechanical model with two-
scale effective pair interactions between cells captures
both the local and large-scale correlations in the actual sys-
tem. It is also noteworthy that g2ðrÞ approaches its large-r
asymptotic value of unity very quickly and SðkÞ possesses
a nonzero value at k ¼ 0. These results demonstrate that
although large-scale density fluctuations are suppressed,
the patterns are not hyperuniform, which distinguishes this
FIGURE 5 Experimentally measured and simu-

lated (averaged over five configurations) pair corre-

lation function, g2ðrÞ (a), and structure factor, SðkÞ
(b), of epidermal patterns, which are in good agree-

ment with one another. To see this figure in color, go

online.
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epidermal system from hyperuniform avian retinal epithelial
mosaics (9). A reasonable explanation for this contrast be-
tween the two systems is that the former must be pliable
to deformations, whereas the latter must be rigid to sample
light uniformly. Note that hyperuniformity has been shown
to arise when a variety of particle packings in two and three
dimensions are driven to maximally random jammed (me-
chanically rigid) states (58,71–77). Indeed, the elastic
moduli are infinite. Moreover, from equilibrium statistical
mechanics, it is well-known that when Sð0Þ of a system is
not zero, i.e., the system is not hyperuniform, the system
is less constrained and typically fluid-like (48), which in
the context of biological cells one can qualitatively think
of as being malleable with relatively small elastic moduli.

The final simulated configurations are endowed with
structural descriptors, beyond the targeted ones (g2ðrÞ and
SðkÞ), that are in excellent agreement with the ones associ-
ated with the experimentally derived image (Fig. 1 b). Spe-
cifically, we construct Voronoi tessellations of experimental
and simulated point patterns and compute the corresponding
polygonal shape (i.e., number of neighbors) distributions of
the resulting Voronoi cells, as shown in Fig. 6. Note that in
this calculation, we exclude cells within a distance of the
sample boundary, d%0:1L (where L is the linear size of
the sample), to avoid boundary artifacts. Voronoi tessella-
tions associated with experimental and simulated (averaged
over five configurations) systems show similar distributions
of polygonal cell shapes, with most of the cells possessing
six neighbors. Moreover, we compute the aforementioned
cn and cA of the Voronoi cells, and the results are shown
in Table 1. We find a good agreement on the values of cn
and cA between the experimental and simulated patterns.
This is remarkable, since our statistical-mechanical model
does not explicitly consider interfacial energy between
cells; nonetheless, the distribution of cell shapes is recov-
ered from simple effective interactions between cell cen-
troids. Furthermore, we compute s2ðRÞ, HPðrÞ, and EPðrÞ
of the simulated configurations (averaged over five configu-
rations), which are in very good agreement with the corre-
sponding quantities of the experimental configurations, as
shown in Fig. 7. This indicates that we again accurately
capture both local and large-scale spatial correlations asso-
ciated with experimental system. Note that s2ðRÞ grows
as R2, which again demonstrates that point patterns of cell
centroids are not hyperuniform. In summary, the above re-
sults demonstrate that our statistical-mechanical model,
as a complementary approach to vertex-based models
(14,23,24,41), can be used to perform in-silico predictions
of epidermal patterns.
CONCLUSIONS

In this article, we first employed the directional pair corre-
lation function, g2ðrÞ, and structure factor, SðkÞ, to quantita-
tively characterize evolving epidermal patterns extracted
from histological images of mouse skin. We find that the
FIGURE 6 Experimentally obtained (a) and

representative final simulated (b) point patterns of

epidermal cell centroids and their associated Voronoi

cells. The insets show blowups of portions of the

original images, which are edited using Adobe

Photoshop software. The polygonal shape distribu-

tion of the Voronoi cells (or the number of neighbors

per cell) associated with the experimental and simu-

lated (averaged over five configurations) point pat-

terns are shown in (c) and (d), respectively. Note

that the point patterns in (a) is a mapping from the

epidermal patterns in Fig. 1 b. Also, cells within a

distance of the sample boundary d%0:1L (where L

is the linear size of the sample) are excluded to avoid

boundary artifacts when calculating the distributions

in (c) and (d). These two point patterns and their

associated Voronoi cells look indistinguishable

from each other visually. It is noteworthy that our

model predicts essentially the same distribution of

cell shapes as that in actuality without explicitly

considering interfacial energy between cells. To see

this figure in color, go online.
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TABLE 1 Topology and Size Disparity of Late-Stage

Experimental and Simulated Epidermal Patterns

Experimental Patterns Simulated Patterns

cn 0.1488 0.1444

cA 0.1810 0.1924

Simulated epidermal patterns were averaged over five configurations. The

quantities cn and cA are normalized standard deviations of the number of

neighbors and area of Voronoi cells, respectively.
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pair statistics of the patterns in the early stages of embryonic
development show structural directional dependence, which
is a reflection of the fact that cells are stretched along the
medial-lateral axis to promote uniaxial growth (68). By
contrast, in the late stages, the patterns possess statistical
isotropy, which likely results from the oriented divisions
and cell rearrangements that relax tissue strain (68).
Increased isotropy accompanies global cell polarization
and a shift toward stratifying divisions, which may be the
functional consequences of these morphological changes.
By matching g2ðrÞ and SðkÞ, we constructed a minimalist
four-component statistical-mechanical model involving
effective isotropic short-range repulsive pair interactions be-
tween cells to predict the late-stage patterns. The ascer-
tained model parameters were biologically constrained.
We constructed the Voronoi tessellations of the simulated
configurations and computed the statistics of the Voronoi
cells. In contrast with many vertex-based models, our statis-
tical-mechanical model does not explicitly consider interfa-
cial energy between cells; nonetheless, our model predicts
essentially the same polygonal shape distribution (in partic-
ular its normalized standard deviation, cn) and normalized
area standard deviation, cA, of Voronoi cells found in exper-
iments. These results demonstrate that our statistical-
mechanical model effectively captures key cell mechanics,
including local structural features in epidermis.

As a testament to its power and, to our knowledge, nov-
elty, our model is able to match other nontrivial uncon-
strained statistics such as the nearest-neighbor probability
density function, HPðrÞ, and its associated complementary
cumulative distribution function, EPðrÞ, and the local num-
FIGURE 7 Experimentally measured and simulated (averaged over five config

EPðrÞ (b), and ‘‘particle’’ nearest-neighbor probability density function,HPðrÞ (c)
simulated configurations match the experimental sample well, as measured by
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ber variance, s2ðRÞ. In addition, we find that the point pat-
terns of cell centroids are not hyperuniform, which we
conclude is consistent with the deformability of skin. This
is to be contrasted with hyperuniform photoreceptor-cell
mosaics in avian retinae, which must be rigid to sample light
uniformly. Our results demonstrate that our statistical-
mechanical model, as a complementary approach to ver-
tex-based models, can be used to predict epidermal patterns.

Our results do not imply that there are effective two-scale
pair interactions between epidermal cells operating during
evolution. Rather the significance of our results lies in an
ability to map the modeling task to the solution of the statis-
tical-mechanical problem of interacting particles and pre-
dict not only the specific late-stage epidermal patterns but
a family of epidermal patterns that can be tuned by varying
the parameters of the effective pair interactions. Future work
will include the introduction of directional effective interac-
tions to predict the epidermal patterns in the early stages that
are statistically anisotropic. Moreover, changing the set of
parameters alters the tissue structure, which ultimately af-
fects the effective properties of the tissue. At the same
time, the tissue structure is intimately related to the proper-
ties of the individual biological constituents, such as cell
elasticity, tension as well as adhesion, which is a surface
interfacial property. Thus, these cell properties are indeed
reflected by the effective parameters in our statistical-
mechanical model. Our biologically constrained model en-
ables us to generate tissue microstructure at will for further
analysis, including the study of other structural and topolog-
ical features as well as physical properties. Furthermore, our
model could be extended to allow for nonspherical-particle
shapes and incorporating local directional interactions be-
tween neighboring cells. This extension would allow one
to capture a wider range of structural features, including
planar cell polarity, which was not considered in this
work. In addition, the image-processing techniques and
various structural descriptors that we employ in this work
can be readily applied to investigate spatial correlations of
cells across length scales in other biological tissues, such
as cucumis and Drosophila epithelia (87).
urations) local number variance, s2ðRÞ (a), ‘‘particle’’ exclusion probability,
for epidermal patterns, where Ln is the mean nearest-neighbor distance. Our

all of these statistics. To see this figure in color, go online.
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It is noteworthy that factors such as the cell growth rate,
division frequency (cell-cycle length), asymmetry in cell di-
vision, and mechanical deformations are known to have the
ability to alter the size and shape of cells (91). For example,
dividing cells in Drosophila epithelia tend to possess more
neighbors and larger cell areas than nondividing cells
(92). Kidney epithelial cells alter size upon changes of rates
of fluid flow in the nephron ducts and mechanical shear on
the primary cilium (93). By varying the size distribution of
cells in our statistical-mechanical model, one can predict
how epidermal cell packing patterns change upon varying
the aforementioned factors.

Interestingly, epidermis may be thought of as multiphase
media consisting of the cell nuclei, cytoplasm, and mem-
brane phases, which possess effective bulk properties that
are intimately related to biological function. This includes
effective transport properties (e.g., diffusion coefficients
and reaction rates), effective elastic moduli, and viscoelastic
characteristics, which depend on the properties of the indi-
vidual phases as well as the structural correlation functions
(48,94–97). For example, the Poisson’s ratios of all the
phases are 0.5, and the Young’s moduli of the nuclei, cyto-
plasm, and membrane phases in human foreskin epithelial
cells are 14 kPa, 37 kPa, and 0.57 kPa, respectively, as
measured by in vitro atomic force microscopy experiments
(89). The characteristic time for viscous dissipation in the
cell membrane is ~0.1 s and the viscosity of the intracellular
cytoskeleton is ~100 Pa, s, reflecting the viscoelastic nature
of epidermis (98). Therefore, using some of the structural
descriptors computed in this work, rigorous analytical and
simulation approaches from heterogeneous materials (48),
including strong-contrast expansions (48), upper and lower
bounds on mechanical properties (48,97), and finite-element
techniques (99,100), may be fruitfully applied to enhance
our understanding of the effective physical properties of
the tissue. Moreover, one can bring to bear cross-property
relations (48), which, to our knowledge, have not been
applied in biological contexts. Cross-property relations are
rigorously exact expressions that relate one effective prop-
erty (e.g., diffusion coefficient or reaction rate) to a given
measurement of a different effective property (e.g., fluid
permeability or elastic moduli) (see (101–103) and refer-
ences therein). Such a program would enable one to under-
stand how the effective properties and associated biological
functions of the tissue change during morphogenesis,
wound healing, and disease-progression processes in skin
(27,67,79,80).

Furthermore, our statistical-mechanical model can be
fruitfully applied to design and generate artificial (or syn-
thetic) tissues. Specifically, by purposely tuning the effec-
tive parameters, we can manipulate the microstructures of
the tissues and construct novel artificial (or synthetic) skin
tissues (104) with desirable mechanical and transport prop-
erties, which can then be realized using, for example, 3D
printing technologies (105).
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60. Szabó, B., G. J. Szöllösi, ., T. Vicsek. 2006. Phase transition in the
collective migration of tissue cells: experiment and model. Phys.
Rev. E. 74:061908.

61. Belmonte, J. M., G. L. Thomas, ., H. Chaté. 2008. Self-propelled
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