PHYSICAL REVIEW E 94, 022152 (2016)

Characterization of maximally random jammed sphere packings.
I1. Correlation functions and density fluctuations
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In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of
maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a
variety of different correlation functions that arise in rigorous expressions for the effective physical properties of
MRIJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and
equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective
transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First,
we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit
analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function
contribution to the pair correlation function g,(r) for MRJ packings translates into distinct functional behaviors of
these two-point correlation functions that do not arise in the other two models examined here. Then we show how
the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density
vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density
fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and
compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture
that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an
spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and
mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical
properties of the MRJ sphere packings that are based on the structural characteristics analyzed in this paper.
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I. INTRODUCTION

Among all mechanically stable packings of totally im-
penetrable spheres in d-dimensional Euclidean space RY,
an especially interesting system is the packing that exhibits
maximal disorder. More precisely, among the set of all
isotropic, frictionless and statistically homogeneous jammed
sphere packings [1-5], of particular interest is the state that
minimizes some given order metric ¥. This is called the
maximally random jammed (MRJ) state [6—14]; see Fig. 1(c).

This definition makes mathematically precise the familiar
notion of random closed packing (RCP) [15-23] in that it
can be unambiguously identified for a particular choice of
the order metric. A variety of sensible, positively correlated
order metrics produce an MRJ state (minimal order metric) in
three dimensions with the same packing fraction 0.64 [7,22].
While three-dimensional (3D) RCP and MRIJ packings of
identical spheres are reported to have similar packing frac-
tions [6,16,19], other structural attributes can be both subtly
and distinctly different [7,24,25]. Moreover, the packing
characteristics of RCP and MRIJ packings of two-dimensional
identical disks have recently been shown to be dramatically
different from one another, including their respective den-
sities, average contact numbers, and degree of order [26],
which serves to punctuate the conceptual differences between
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RCP and MRJ states. Maximally random jammed packings
possess the singular property of hyperuniformity [27,28]; i.e.,
infinite-wavelength density (volume-fraction) fluctuations are
anomalously suppressed. In MRJ packings in d-dimensional
Euclidean space RY, this is manifested as negative quasi-
long-range pair correlations that decay asymptotically like
—1/r?*1[29,30]. Disordered hyperuniformity can be seen as
an “inverted critical phenomenon” with a long-ranged direct
correlation function, in contrast to thermal critical points in
which this function is short ranged [27,31].

The purpose of the present series of papers is to delve
more deeply into the structure and physical properties of 3D
MRIJ packings of identical frictionless spheres. In the first
paper of this series [32], we introduced Voronoi correlation
functions to characterize the structure of MRJ sphere packings
across length scales. More precisely, we computed correlation
functions associated with the volume and other Minkowski
functionals of Voronoi cells. We investigated similarities
and differences in both the local and the global structure
of overlapping spheres, equilibrium hard-sphere liquids, and
MRIJ sphere packings; see Fig. 1. We demonstrated that
although their local structural characteristics appear to be
qualitatively similar, their global structure is qualitatively
different. Strong Voronoi anticorrelations that we found in
the MRJ state are related to its hyperuniformity.

In this paper, we determine a variety of different correlation
functions that arise in rigorous bounds on the effective
physical properties [33-45] of MRIJ sphere packings and
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FIG. 1. Disordered
spheres, (b) an equilibrium hard-sphere liquid, (c) an MRJ sphere
packing.

sphere configurations: (a) overlapping

compare them to the corresponding statistical descriptors for
overlapping spheres and equilibrium hard-sphere systems.
This includes the two-point probability functions, two-point
surface correlation functions, and pore-size distributions.
These statistical descriptors arise, e.g., in rigorous bounds
for effective transport properties [33-36,46], diffusion and
reactions constants [37,38], or mechanical [39] and electro-
magnetic properties [40—42]. The surface-void and surface-
surface correlation functions allow for improved bounds on
the trapping constant [34,43,44] and the fluid permeabil-
ity [35,45]. All of these bounds will be the topic of the third
paper in this series. Thus, we relate different topics in material
science, chemistry, physics, and mathematics.

Moreover, we investigate how the hyperuniformity of
the MRIJ state affects its global structure (in comparison
to the nonhyperuniform equilibrium hard-sphere liquid and
overlapping spheres). Hyperuniformity can, for example, be
detected by a vanishing spectral density [47] in the limit of
large wavelengths. An alternative equivalent diagnostic is how
density fluctuations scale (asymptotically) with the size of the
observation window.

In Sec. II, we define and explain the structural descriptors
used here to quantify both the two-phase medium formed by
the spheres and the point process formed by the sphere centers.
These structural characteristics of the MRIJ packings are
compared to those of equilibrium hard spheres and overlapping
spheres. In Sec. III, we derive, for a given configuration of N
hard spheres within a periodic simullation box, MRJ or not,
explicit analytical expressions for the two-point correlation
function S,(r), surface-void correlation function Fi,(r), and
surface-surface correlation function F(r) as defined in
Ref. [39], for example. These formulas allow for a fast and
accurate calculation of these correlation functions, as well as
corresponding integrals that are needed for void and interfacial
bounds [34,35,43-45]. We also investigate the behavior of the
sphere configurations in reciprocal space in Sec. IV, where
we compare different estimators of the spectral density %, (k)
associated with the two-point probability function; see, e.g.,
Refs. [39,48]. In Sec. V, we determine the complementary
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cumulative distribution function F(§) of the pore sizes § for
the MRIJ sphere packings and compare them to those of the
overlapping and equilibrium hard spheres as well as crystalline
structures. We also obtain the exclusion probability Ey(r),
which is trivially related [39].

Second, we analyze the aforementioned sphere models
as point processes. Therefore, we identify the sphere con-
figurations with the point patterns formed by the sphere
centers in order to analyze their local density fluctuations
within a spherical window of radius R. In Sec. VI, we first
estimate the probability distributions of the number of sphere
centers N within a spherical window of radius R for the
equilibrium and the MRIJ sphere packings for various sizes
of the observation window [49]. The distributions quickly
converge (for increasing window size) to normal distribu-
tions, which is consistent with analogous previous results
for “volume-fraction” fluctuations for particle systems [49].
We thus conjecture a central limit theorem for disordered
hard-sphere systems. Then we study the local number variance
as a function of the radius of the observation window.

In Sec. VII, we summarize the results and make concluding
remarks. In Appendix A, we analytically derive for a given
finite configuration of hard spheres the explicit expressions
for the correlation functions mentioned above.

II. DEFINITIONS OF THE CORRELATION FUNCTIONS
AND OTHER STRUCTURAL DESCRIPTORS

A system of hard or overlapping spheres can either be
viewed as a medium that consists of two phases, where
the first is formed by the spheres and the second by the
surrounding matrix, or it can be represented by the point pattern
that is formed by the sphere centers. Here we analyze both
the two-phase random medium and the point process using
different structure characteristics, which are summarized in
Table I; see also Fig. 2.

When characterizing the two-phase medium formed by the
spheres, we choose the diameter D of the spheres as the unit of
length. In other words, the spheres in different systems have the
same diameter. On the other hand, we compare point patterns
at unit density, so that when analyzing a point process, we use
A = p~1/3 as the unit of length, where p is the number density
(or intensity). The latter is the mean number of points per unit
volume.

A. Two-phase media

A two-phase medium can be represented by the so-called
indicator function Z)(r) for phase j € {1,2} [39],

1, rinphase j,

) .
o) = {0, otherwise, )

which is sometimes also called the characteristic function of
phase j. Also, the indicator function M(r) for the interface
can be defined as a generalized function, i.e., involving Dirac
delta functions [39]:

M(r) := VIV = |[VIDr). 2)

It is nonzero only if r is on the interface.
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TABLE I. The structure characteristics used here describe either a random two-phase media, which is formed by the spheres and the
surrounding matrix phase, or a point process, which is formed by the sphere centers. The unit is denoted by the length /, and references to the
definition and some results in this paper are collected for each characteristic. If possible, their representation by the canonical n-point functions

is provided; see Sec. I C.

Characteristic Unit Canonical n-point function Definition Results
Two-phase media
Volume or packing fraction ¢ 1 lim,,_, z H,(2; {x}; @) Eq. (3) Sec. [IT A
Specific surface s 1/1 lim, .z H({x}; 9; D) Eq. 4) Sec. IlIT A
Two-point correlation function S>(r) 1 limg, g, i=1,2 H2(D; {X1,X2}; @) + 2¢% — 1 Eq. (5) Fig. 3; Tables II, 11T
Surface-void correlation function F,(r) 1/1 lim,, g, =12 Ho({X1}; {X2}; @) Eq. (6) Figs. 4, 12; Tables II, I1I
Surface-surface correlation function — Fi,(r) /7 lim,, g, i=12 H({X1,X2}; 93 ) Eq. (8) Figs. 5, 13; Tables II, I1I
Spectral density z & P Eq. (13) Fig. 6; Tables IV, V
Complementary cumulative F(5) 1 Eq. (17) Fig. 7
pore-size distribution
Mean pore size () 1 Eq. (18) Sec. VB
Second moment of the pore size (82) ? Eq. (19) Sec. VB
Point processes
Exclusion probability Ey(r)y 1 lim,,_,, H,(2; {x}; @) Eq. (20) Fig. §; Tables II, 111
Number probability distribution fr(N) 1 Sec.lIB2  Fig. 9
Number variance 0,%,(R) 1 Eq. (22) Fig. 10

1. One-point functions

To characterize the two-phase media formed by the dif-
ferent sphere systems, we first consider one-point probability
functions [39].

The volume (or packing) fraction ¢ of the phase covered
by spheres is equal to the probability that a random point lies
within any sphere and thus within the phase 2 formed by the
spheres:

¢ = P{IO(r) = 1} = (T(r). 3)

This probability is equal to the expectation of the indicator
function because the latter only takes on the values O or 1.
The angular brackets denote an ensemble average (over all
possible realizations) at a fixed position r. Because the systems

sEés(T)

~
el
“llli:

(a)

F(5)
CTY PN

studied here are homogeneous and ergodic, this average does
not depend on the position, and it corresponds to a spatial
average in the infinite-volume limit.

The specific surface s is the ratio of the surface area and
the volume of the whole system. It can be similarly defined by
the expectation of the indicator function for the interface:

s = (M(®r)). 4

A probably more intuitive interpretation considers the proba-
bility that a random point falls within a shell of thickness €
around the interface [39]. In the limit of vanishing thickness
€ — 0, the ratio of this probability and the thickness €
converges to the specific surface. For a packing of hard spheres
with diameter D, the specific surface can easily be related to

-

FIG. 2. The schematic depicts events that contribute to the structure characteristics from Table I when single points, balls, or points at a
given distance (dashed lines) are placed randomly in the sample (a) for a packing of hard spheres forming a two-phase random medium or

(b) for the point process of the sphere centers.
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the volume (or packing) fraction via s = 6¢/D. To begin, we
consider a one-point probability function, the volume fraction
¢ of the phase covered by spheres and the specific surface s,
which is (in the limit of infinite system size) the ratio of the
surface area and the volume of the whole system [39].

2. Correlation functions

In contrast to the one-point functions, the two-point
functions describe the global structure; i.e., they characterize
correlations at larger distances.

An intuitive definition of the rtwo-point correlation function
Sé’ )(rl ,r») for phase j is the probability that the two points r;
and r; lie in phase j [39]:

SP(r1,r) := P{ZYV(r)) = 1 and TV (ry) = 1}
= (ZV(r)IV(r))). )

For homogeneous and isotropic systems, this two-point cor-
relation function only depends on the distance r between two
points. Séj )(r) can then be interpreted as the probability that
two random points at a distance r are both found in phase
Jj- Here we calculate the two-point correlation function for
phase 2 formed by the spheres. For convenience, we define
SH(r) := Séz)(r). Note, however, that the difference of the
two-point correlation functions of the two phases is simply
a constant offset by (1 — 2¢). So, we can easily deduce S,(r)
for the first phase if we know it for the second phase.

In contrast to the two-point correlation function, the
surface-void correlation function Fy,(ry,r;) is not a proba-
bility but the limit of a rescaled probability. It considers the
probability that a random point is inside the “void” and another
random point is in a shell of (vanishing) thickness € close to the
interface between the two phases. The surface-void correlation
function is the limit of the ratio of this probability and the
distance € for € — 0 [39]. Therefore, it has units of inverse
length.

If the void phase is denoted by j,, the surface-void corre-
lation function can be defined using the indicator functions of
the void phase and the interface:

Fyy(ri,ra) i= (M(r)ZV(ry). (6)

For homogeneous and isotropic systems, it only depends on
the distance » between two points, which is denoted by Fj,,(r).

For two-phase random media formed by the spheres, Fj,(r)
depends on the choice of which phase is considered as “void.”
Either the space exterior to the spheres or the phase formed by
the spheres can form the void phase. However, the correlation
functions for both choices can easily be derived from one
another. In the following, Fj,(r) denotes the case where the
space exterior to the spheres forms the void phase. We denote
by F$)(r) the corresponding function for the complementary
system, i.e., where the spheres are the void phase. The sum of
these two correlation functions is a constant and equal to the
specific surface:

Fo(r)+ FS(r) = s. (7)

Like the surface-void correlation function, the surface-
surface correlation function is no probability but the limit
of a rescaled probability. As the name indicates, it considers

PHYSICAL REVIEW E 94, 022152 (2016)

the probability that both random test points are inside a shell of
(vanishing) thickness € close to the interface between the two
phases. The surface-surface correlation function is the limit of
the ratio of this probability and €2 for € — 0 [39]. Therefore,
it has units of inverse length squared.

It can be defined using the indicator function of the
interface:

Fys(ri,r2) := (M(r)M(r)). (8

For homogeneous and isotropic systems, the correlation
function again only depends on the distance r between two
points. This is in the following denoted by Fi(r).

In contrast to the surface-void correlation function, the
surface-surface correlation function does not depend on the
choice of which phase is “void.”

3. Spectral density

From the two-point correlation function S,(r) follows the
definition of the autocovariance of a two-phase medium,

X, (1) := Sa(r) — 9% ©

see, e.g., Ref. [39], Sec. 2.2.5. Its Fourier representation can be
obtained via scattering of radiation [50]. The Fourier transform
of the autocovariance is the spectral density:

%, (k) = Flx, ()] = /drxv(r)e_ik". (10)

For a statistically isotropic material, where S»(r) is only a
function of the distance r, also the spectral density only
depends on the absolute values k of the wave vector:

_ 4 [ 2 .
Xy (k) == Flx, (] = 7/ dr[Sy(r) — ¢Ir sin(kr). (11)
0

An equivalent definition of the spectral density is given by
the Fourier transform of the indicator function Z®(r) of the
particle phase, or more precisely, of the function

J(r):=I9r) — ¢, (12)

where we subtract the mean value of the indicator function.
The spectral density is the absolute square of this Fourier
transformation divided by the volume of the system [48]:

L T
X, (k) = VIJ(k)I . 13)

We here consider the spectral density as a function of the
wave vector k (and not only of its absolute value), because,
calculating the spectral density based on this definition, we
can explicitly take for finite samples nonorthogonal simulation
boxes into account.

For monodisperse hard spheres, the Fourier transform J(k)
of the two-phase medium can be rigorously related to the point
process formed by the sphere centers. The absolute value of
the first can be expressed by the structure factor S(k) of the
latter, where the structure factor can be defined as S(k) = 1 +
pfz(k) using the Fourier transform A(k) of the total correlation
function h(r) = g»(r) — 1 [and g»(r) is the pair correlation
function]. The spectral density is then given by [28,39,51]

1 .
%, (k) = V|J(k>|2 = pi(k)S(K), (14)
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where p is the number density and (k) is the Fourier
transform of a single sphere. In d-dimensional Euclidean
space, it is given by

3 xD\? kD
m(k)=<7> Jd/2<7>. (15)

Here J;,2(x) is the Bessel function of the first kind of order
d/2, which is in three dimensions given by

[ 2
J3p(x) = m[sin(x) — x cos(x)]. (16)

The structure factor S(k) is important not only because it can
be directly measured in scattering experiments. It can also
be used to detect a remarkable property of point processes,
hyperuniformity, as discussed in Sec. IV.

4. Pore-size distribution

We also characterize the sphere configurations by the
distribution of their pores sizes &, that is, the maximum radius
of a spherical pore that can be assigned to a random point
in the matrix phase so that the pore lies wholly in the matrix
phase. The probability density function P(8) of the pore sizes
is also known as the “pore-size distribution” [37]. For a point
chosen randomly in the matrix (or void) phase, P(8)d§ is the
probability that its shortest distance to the solid-void interface
lies between § and § + d§. Because P(8) is a probability
density function, it is normalized fooo d§ P(8) = 1 andithas the
unit of the inverse of length. Note that the distribution of pore
sizes within a phase formed by hard spheres is trivial in the
sense that it is independent of the position of the spheres [52].

An equivalent representation is the complementary cumu-
lative distribution function F(§) of the pore sizes:

F(8) = /OodrP(r). (17)
§

It can be interpreted as the fraction of the matrix phase
with a pore radius larger than §. By definition, F(0) = 1 and
F(00) = 0, and because it is a probability, F(§) has no units.
The cumulative distribution function [1 — F(§)] is also known
as the spherical contact distribution function [53-55].

The mean pore size (8) and the second moment (82) of P(8)
can be expressed by F(8) [39]:

(6) :== fwdSF(S), (18)

0

(8% =2 /OOO dSF(5)s. (19)

They can be interpreted as characteristic length scales of the
matrix phase.

B. Point processes

For a packing of monodisperse spheres, the structure
characteristics of the two-phase medium formed by the spheres
can be related to those of the point pattern formed by the
centers.

PHYSICAL REVIEW E 94, 022152 (2016)

1. Exclusion probability

The probability that a test sphere of radius r that is placed
randomly in the sample does not contain any point of the
point process is called the exclusion probability Ey(r). It
is a nonincreasing function, and it can be interpreted as the
expected fraction of space available to a test sphere of radius
r, which is not allowed to contain a point of the point process.
For monodisperse spheres of radius R, it is trivially related to
the complementary cumulative pore-size distribution F(§) via

Ev(r)=(1—¢)F(r —R) forr > R. (20)

For r < R, the exclusion probability for hard-sphere centers
is simply given by

4
Evir)=1— an3p. Q1)

2. Local number density fluctuations

The exclusion probability considers whether a randomly
placed test sphere of radius R contains at least one point of
the point process. This can be generalized to the probability
function fr(N) that there are exactly N points of the point
process inside the test sphere. This number probability function
fr(N) includes the exclusion probability Ey(r) = f.(0).
However, the complete probability function fx(N) is a more
general measure of density fluctuations in the point pattern. For
the example of a Poisson point process, the number probability
function fg(N) is by definition a Poisson distribution [59].

The mean value of the number probability function, i.e.,
the expectation of the number N of points in the test
sphere (or “observation” window) of radius R, is given by
(N)g:=0p %”R3 for a statistically homogeneous point process
(according to the definition of the number density p). The
variance of N is known as the number variance:

oN(R) := (N*)r = (N)g = D fr(m)(n — (N)g)*.  (22)
n=0

For a Poisson distribution, the variance is equal to the mean
value. For a lattice, the number variance scales for large radii
like the surface of the spherical observation window, since
number fluctuations are concentrated in the vicinity of the
window boundary [27].

The number variance is closely related to the structure
factor [27],

P
@2n)}

where (k) is the Fourier transform of a single sphere;
see Eq. (15). Therefore, the number variance can, similar
to the structure factor, detect whether a point process is
hyperuniform. If the number variance o7 (R) grows in the
limit of large radii R — oo more slowly than R, the point
process is hyperuniform. This definition of hyperuniformity
based on the scaling of of,(R) is equivalent to the definition
via the limit limy_,¢ S(k) = 0.

ov(R) = /R 3 dkS(K)m>(k), (23)

C. Canonical n-point functions H,

It is noteworthy that the correlation functions and exclusion
probability discussed here are special cases of the more general
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canonical n-point functions H,, which describe higher-order
spatial correlations between spheres and test particles [39].

The canonical r-point function H, statistically character-
izes n spherical test particles with radii b; (i =1,...,n).
Before inserting the ith test particle, so-called “exclusion
spheres” with radii a; = R + b; are assigned to each of the
original sphere centers. Overlap between exclusion spheres
is allowed. If b; = 0, the exclusion spheres are identical to
the original spheres; b; > 0 corresponds to a dilation of the
sphere system and —R < b; < 0 to an erosion. The “available
space” D; of the ith test particle is defined as the complement
of the union of these exclusion spheres. In other words, the
test particle should not fall into any exclusion sphere. The
canonical n-point function characterizes these D;.

In the notation of Torquato [39], a canonical n-
point correlation function is denoted by H,({xy,...,xXu},
{(Xmsts X1 {r ps1, ..., rs}). It is a very general function
that combines

(i) the m-point surface correlation function associated with
aDy,...,0D,,, ie., the surfaces of spaces available to test
particles of radii by, ...,b,, as a function of the positions
X1, ...,X,, respectively;

(i) the (p — m)-point correlation function associated with
Dyit1, ...,Dp, ie., the spaces available to test particles of
radii by, 41, . .. ,bp, as afunction of the positions X, 41, ..., X,
respectively;

(iii) and the (n — p)-point correlation function of the sphere
centers as a function of the positions 7 1., . . . ,r,, respectively.

This huge family of correlation functions includes a wealth
of information about the geometry of the point pattern (or the
corresponding sphere packings, respectively). If for a specific
H, we omit one of these three types of correlation functions,
the corresponding set of variables is replaced with the symbol
& for the empty set.

For example, the one- and two-point functions discussed
here can be expressed by the canonical n-point functions H,
in the limit that the radii a; of the exclusion spheres become
equal to the radius R of the (original) spheres. Using a single
test particle with radius a;, we express the occupied volume
fraction as

¢ = lim Hi(2:{x};2), (24)

which actually does not depend for a homogeneous system on
the position x. Similarly, we express the specific surface s as

s = limR H({x}; @;9). (25)

For the two-point correlation function, we need two test
particles with radii a; and a,:

$(x1.02) =207 — 1+ lim Hy(@: {x1.x2}:2).  (20)
o
ay—>R

The surface-void correlation function can be written as

Fo(eix2) = lim Ha({x1); {x2): @) @7

02—>R
and the surface-surface correlation function as

Fys(x1,x2) = allignk Hy({x1,x2}; @; 9). (28)

a—>R
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Instead of directly declaring a;,a; = R, we explicitly denote
the limits to emphasize the generality of these canonical
correlation functions. It has been shown that the general-
izations using test particles with sizes larger than R contain
considerably more information than the two-point correlation
functions considered here [60] and hence represents an area
for future study in the case of MRJ packings.

For example, the exclusion probability Ey can also be
represented by a one-point canonical correlation function like
the packing fraction but with a different radius of the test
spheres,

Ev(r) = lim Hy(@; {x); ), 29)

which for a statistically homogeneous system does not depend
on the position x.

III. ANALYSIS AND COMPUTATION
OF THE CORRELATION FUNCTIONS

Bounds on the trapping constant or permeability can be
calculated using the void-void, surface-void, and surface-
surface correlation functions of the sphere configura-
tions [34,35,39,40,42,44]. More precisely, the bounds are
given in terms of integrals over these correlation functions.

These integrals can be difficult to estimate by simple Monte
Carlo sampling due to statistical fluctuations in the measured
volume fraction. Any statistical fluctuation in the estimate of
the porosity, that is, in the fraction of points hitting the void
phase, causes an offset in the long-range limit of the correlation
functions. This offset can lead to huge errors in the estimates
of the bounds which are based on integrals of the correlation
functions.

In Appendix A, we derive explicit analytical formulas of
the two-point, surface-void, and surface-surface correlation
functions for a given finite configuration of hard spheres, which
heretofore were not put forth. In the thermodynamic limit, i.e.,
for infinitely large systems, these correlation functions can
be analytically related to the pair-correlation function g»(r)
of the sphere centers. For example, Torquato and Stell [51]
and Torquato [61] used certain analytical approximations
of the pair-correlation function for equilibrium hard-sphere
liquids [62] to calculate S,(r), Fi,(r), and Fs(r); see also
Ref. [63], where a similar approach is used to calculate bounds
on flow properties. Here we provide exact and explicit formulas
for the two-point, surface-void, and surface-surface correlation
functions of finite packings of hard spheres for general
ensembles. These expressions can be viewed as “discrete
versions” of the formulas in Refs. [51,61]. They depend only
on the pairwise distances of the spheres. This allows for the
most efficient calculation of S,(r), Fy,(r), and Fy(r) in finite
packings (obtained, e.g., from simulations), as well as accurate
estimates of the bounds on effective properties that depend on
these correlation functions.

The samples of the hard-sphere packings that we analyze
here were described in detail in the first paper of this series [32].
For MRIJ sphere packings, more than 1000 packings are
analyzed, each consisting of 2000 spheres. For equilibrium
hard spheres, each of the 100 samples contains 10 000 spheres.
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We compare the correlation functions of the MRJ sphere
packings, as mentioned in the Introduction, to two other
systems of spheres with constant diameter D: (i) overlapping
spheres that do not interact with each other and (ii) an
equilibrium hard-sphere liquid at a packing fraction ¢ =
0.478, which is just below the freezing transition. For more
details about these systems, the simulations, and the data, see
the first paper of this series [32].

A. One-point functions

Before analyzing the two-point functions, we determine the
one-point probability functions, namely volume fraction and
specific surface.

The average packing fraction of the MRIJ sphere pack-
ings is ¢ = 0.636 and their specific surface s = 3.81/D.
The snapshots of the equilibrium hard-sphere liquid have
an average packing fraction ¢ = 0.478 and thus a specific
surface s = 2.87/D. For overlapping spheres, the one-point
functions are known analytically as a function of the occupied
volume fraction ¢. The specific surface is given by s =
6(1 — @)In[1/(1 — @)1/ D. For a volume fraction ¢ = 0.636
(equal to the average packing fraction of the MRJ systems),
the specific surface is s &~ 2.21/D.

B. Two-point correlation function

The two-point correlation function S;(r) determines bounds
on the conductivity [39—41], the trapping constant [34], the
fluid permeability [33,35], and the effective dielectric tensor
of electromagnetic waves [42].

Figure 3 compares the two-point correlation function for
the particle phase of the MRJ sphere packings to that of
overlapping spheres or two equilibrium hard-sphere liquids
at different global packing fractions. It is well-known an-
alytically for overlapping spheres [e.g., 39, p. 122]. For
both the equilibrium and the MRIJ sphere packings, the
two-point correlation functions are analytically calculated
for each simulated sample according to Eq. (Al) and then
averaged. The dashed lines indicate the short- and long-range
limits of the two-point correlation function, $,(0) = ¢ and
lim, 0 S2(r) = ¢ (for a homogeneous two-phase medium
without long-range interactions), as well as the slope at r = 0.
The latter is proportional to the specific surface. For isotropic
three-dimensional two-phase media, the derivative of S,(r) in
the limit » — 0 is —s/4 [39,64,65].

The two-point correlation function S,(r) appears smooth
for the MRIJ state, as well as overlapping and equilibrium
hard spheres, and indeed they are continuous and differ-
entiable. However, the contribution from a single sphere,
i.e., the probability that two random points lie in the same
sphere, is nonzero only for » < D. For hard spheres, it is
proportional to (D — r)?; see Eq. (A6). Therefore, the second
derivate does not exist at » = 2D. (The same can be shown
for overlapping spheres using the explicit expressions from
Ref. [39].)

For overlapping spheres, the two-point correlation function
is for r > D constant and equal to the long-range limit. This is
because two points at a distance larger than the diameter D of
a single sphere cannot belong to the same sphere. Therefore,
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FIG. 3. Two-point correlation functions S,(r) for overlapping
spheres (¢ = 0.636), equilibrium hard-sphere liquids (¢ = 0.478
and ¢ = 0.50, data from Ref. [39]), and MRJ sphere packings
(¢ = 0.636). The dashed lines indicate the limits of the curves. The
distance r is rescaled by the diameter of a single sphere D. The slope
at r = 0 (indicated by a dashed line) is proportional to the specific
surface s; see Secs. Il A 1 and IIT A.

the event that one of the test points is inside a sphere is
independent of the other point. There are no anticorrelations
in S,(r) of overlapping spheres. However, both hard-sphere
packings exhibit positive and negative correlations.

For equilibrium hard spheres, Fig. 3 compares our results
at ¢ = 0.478 to Monte Carlo estimates by Torquato [39] of an
equilibrium hard-sphere liquid at ¢ = 0.50 with no detectable
crystals. Their qualitative behavior agrees very well. The
functional values from Ref. [39] are slightly larger because
of the larger packing fraction.

C. Surface-void correlation function

The surface-void and surface-surface correlation functions
allow for improved bounds on the trapping constant [34,43,44]
and the fluid permeability [35,45].

Figure 4 compares the surface-void correlation function
F;,(r) for MRJ sphere packings [see Eq. (A12)] to those of
overlapping and equilibrium hard spheres. For overlapping
spheres, the surface-void correlation function is known ana-
lytically [e.g., 39, p. 125]. The curve for the equilibrium hard-
sphere liquid agrees with previous findings in Refs. [61,67].
If the surface-void correlation function is divided by the
specific surface, the ratio takes on only values between zero
and one like a probability. For a two-phase medium with
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MR.J sphere packings
¢ =0.636

Equilibrium hard spheres
¢ =0.478 |

Overlapping spheres

= 0.636
0.37 ¢
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FIG. 4. Surface-void correlation functions Fj,(r) (rescaled by the
specific surface s) for overlapping spheres (¢ = 0.636, s = 2.21/D),
an equilibrium hard-sphere liquid (¢ = 0.478, s = 2.87/D), and
MRJ sphere packings (¢ = 0.636, s =3.81/D). For details,
see Fig. 3.

a sufficiently smooth boundary, the surface-void correlation
function converges for r — 0 to F,(0) = s/2 [39].

For a homogeneous random two-phase media without long-
range correlations, it converges in the limit of large distances
to lim, _, o Fy,(r) = s(1 — ¢), where ¢ is the volume fraction
of the solid phase. Both limits are depicted by dashed lines
in Fig. 4.

The surface-void correlation functions Fj,(r) are contin-
uous. However, in contrast to S>(r), they are not smooth at
r = D. The discontinuity in the first derivative stems from
the contributions of events where the interior and surface
of the same sphere are hit. For example, for hard spheres
these contributions to F,(r) are proportional to (D — r);
see Eq. (A13).

As for the two-point correlation function, the surface-void
correlation function of overlapping spheres takes on the value
of the long-range limit for all » > D. This is again because
two different spheres are independent of each other.

The derivative of Fy,(r) for small distances » — O has a
different sign for the MRJ and equilibrium hard spheres, which
is mainly due to the different global packing fraction (above
or below 0.5). However, there is also a more interesting and
subtle difference in the slope at r = 0. A distinct signature
of contacts between spheres can be found in the two-body
contribution F} (r) (see Appendix B) because at least in finite
packings, the slope of F(r) at r = 0 can be related to the
mean contact number. Therefore, this slope vanishes for the
equilibrium but not for the MRJ sphere packings.
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FIG. 5. Surface-surface correlation functions Fy,(r) (rescaled by
the square of the specific surface s) for overlapping spheres (¢ =
0.636, s = 2.21/D), an equilibrium hard-sphere liquid (¢ = 0.478,
s = 2.87/D), and MRIJ sphere packings (¢ = 0.636, s = 3.81/D).
For details; see Fig. 3. The insets magnify Fy(r)/s*> at r/D =2,
where the derivative of Fj; is discontinuous for the MRIJ sphere
packings in contrast to the equilibrium hard spheres.

D. Surface-surface correlation function

Figure 5 compares the surface-surface correlation function
Fys(r) for MRJ sphere packings [cf. Eq. (A16)] to those of
overlapping spheres and an equilibrium hard-sphere liquid.
For overlapping spheres, also the surface-surface correlation
function is known analytically [e.g., 39, p. 125]. Like S,(r) and
F;,(r), Fsg(r)isforr > D constant and equal to the long-range
limit. The surface-surface correlation functions for the equi-
librium hard-sphere liquid also agree with previous findings
in Refs. [61,67]. The long-range limit is lim,_, o, Fy(r) = 52
(indicated by a dashed line in Fig. 5). For r — 0, the surface-
surface correlation function diverges because the probability
to find a single point in the shell of thickness € only
vanished like € but it is rescaled by €2. The surface-surface
correlation functions are discontinuous at r = D because the
single-body contribution is discontinuous; for hard spheres,
see Eq. (A20).

Interestingly, it is only for the MRJ sphere packings that the
surface-surface correlation of the MRJ sphere packings is not
smooth atr = 2D, which is caused by the contacts between the
spheres. More precisely, the first derivative is discontinuous at
r = 2D, which we can rigorously related to the radial Dirac
delta function contribution of g»(r) atr = D; see Appendix B.
The spheres at contact with each other also cause at r = D
a discontinuity in the derivative of two-body contributions
F}.(r) to the surface-surface correlation functions. Moreover,
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TABLE II. Probability and correlation functions of the equilib-
rium hard-sphere liquid (with ¢ = 0.4780) corresponding to Figs. 3,
4, 5, and 8. The specific surface is s = 2.868/D. The statistical
errors are smaller than the accuracy of the presented data here.
For the correlation functions, they are mostly below 3x107*.
For the exclusion probability, they mainly range between 2x 107>
and 1077,

PHYSICAL REVIEW E 94, 022152 (2016)

TABLE III. Probability and correlation functions the MRJ hard-
sphere packings (with ¢ = 0.6356) corresponding to Figs. 3, 4, 5,
and 8. The specific surface is s = 3.814/D. The statistical errors
are smaller than the accuracy of the presented data here. For
the correlation functions, they are mostly below 2x10~*. For
the exclusion probability, they mainly range between 5x107%
and 1077,

r/D S2(r) Fy(r)/s Fy(r)/s? Ey(r) r/D S2(r) Fy(r)/s Fy(r)/s? Ey(r)
0 0.4780 1/2 e 1 0 0.6356 1/2 0 1

0.09 0.4148 0.5279 2.135 0.9972 0.09 0.5583 0.4680 1.958 0.9963
0.18 0.3577 0.5332 1.303 0.9777 0.18 0.4983 0.4328 1.282 0.9703
0.27 0.3096 0.5274 1.081 0.9247 0.27 0.4542 0.4005 1.080 0.8999
0.36 0.2716 0.5172 0.999 0.8216 0.36 0.4238 0.3739 0.994 0.7628
0.45 0.2435 0.5071 0.968 0.6515 0.45 0.4046 0.3543 0.955 0.5367
0.54 0.2245 0.4998 0.961 0.4014 0.54 0.3942 0.3427 0.942 0.2225
0.56 0.2213 0.4988 0.961 0.3401 0.56 0.3928 0.3412 0.941 0.1630
0.58 0.2186 0.4980 0.962 0.2809 0.58 0.3917 0.3402 0.942 0.1138
0.60 0.2163 0.4975 0.964 2.26x107! 0.60 0.3909 0.3395 0.943 7.60x 1072
0.62 0.2143 0.4973 0.966 1.76x107! 0.62 0.3904 0.3393 0.944 4.83x1072
0.63 0.2134 0.4972 0.968 1.54x107! 0.63 0.3902 0.3393 0.945 3.77x1072
0.72 0.2092 0.5006 0.985 3.05x1072 0.72 0.3907 0.3438 0.965 1.99x1073
0.81 0.2107 0.5104 1.013 2.63x1073 0.81 0.3945 0.3547 1.002 2.45x107°
0.90 0.2170 0.5266 1.053 0.90 0.4009 0.3710 1.053

0.99 0.2275 0.5492 1.103 0.99 0.4094 0.3930 1.116

1.08 0.2372 0.5380 0.976 1.08 0.4144 0.3807 0.993

1.17 0.2397 0.5273 0.991 1.17 04118 0.3682 0.989

1.26 0.2374 0.5207 0.994 1.26 0.4067 0.3602 0.986

1.35 0.2328 0.5170 0.995 1.35 0.4021 0.3563 0.985

1.44 0.2282 0.5156 0.995 1.44 0.3995 0.3559 0.987

1.53 0.2249 0.5159 0.997 1.53 0.3992 0.3583 0.993

1.62 0.2234 0.5177 0.999 1.62 0.4006 0.3623 1.002

1.71 0.2239 0.5204 1.003 1.71 0.4029 0.3666 1.012

1.80 0.2257 0.5234 1.007 1.80 0.4052 0.3699 1.015

1.89 0.2281 0.5259 1.007 1.89 0.4068 0.3711 1.010

1.98 0.2303 0.5267 1.003 1.98 0.4072 0.3689 0.997

2.07 0.2316 0.5251 0.997 2.07 0.4060 0.3640 0.992

2.16 0.2315 0.5225 0.996 2.16 0.4040 0.3611 0.992

2.25 0.2303 0.5206 0.997 225 0.4024 0.3603 0.994

2.34 0.2288 0.5196 0.998 2.34 0.4018 0.3612 0.997

243 0.2274 0.5196 0.999 243 0.4022 0.3632 1.001

2.52 0.2267 0.5203 1.000 252 0.4032 0.3653 1.005

2.61 0.2268 0.5214 1.001 2.61 0.4043 0.3668 1.006

2.70 0.2274 0.5225 1.002 2.70 0.4051 0.3672 1.004

2.79 0.2283 0.5233 1.002 2.79 0.4053 0.3664 1.000

00 0.2285 0.5220 1 00 0.4040 0.3644 1

the functional value of the two-body contributions at» = 0 can
be related to the mean contact number. It therefore vanishes
only for the equilibrium liquid but not for the MRJ sphere
packings; see Appendix B.

Tables II and III list numerical values of the two-point,
surface-void, and surface-surface correlation functions for
both the equilibrium and MRJ sphere packings; see also
the Supplemental Material for estimates of the correlation
functions at more radial distances [68].

IV. SPECTRAL DENSITY

As mentioned in the Introduction, MRJ packings possess—
in contrast to the equilibrium hard-sphere liquid below the
freezing transition—the singular property of hyperunifor-
mity [27,28]; for detailed discussion of this exotic state
of matter, see Refs. [7,27-29,48,69]. Large-scale density
fluctuations or volume-fraction fluctuations are anomalously
suppressed [27-30]. Therefore, not only are MRJ packings
characterized by short-range order, but they can be regarded
to possess a “hidden long-range order” due to the global
hyperuniformity property.
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In a hyperuniform point process, the structure factor S(k)
vanishes as the wave number & tends to zero,

%ii% S(k) =0. (30)

For a monodisperse packing of hard spheres, S(k) of the
sphere centers is directly proportional to the spectral density,
as explained in Sec. II A 3; see Eq. (14). Because the Fourier
transform of a single sphere (k) converges for k — O to a
constant [70] that is strictly greater than zero, the spectral
density vanishes for £k — 0 if and only if the structure factor
vanishes limy_,o S(k) = 0. Hyperuniformity can therefore also
be detected by a vanishing spectral density in the limit of short
wave vectors (i.e., long wavelengths):

%13(1) X, (k) = 0. (31)

This latter definition of hyperuniformity can also be applied
to polydisperse packings and even more general two-phase
media [71]. It is equivalent to a quasi-long-range asymptotic
behavior of the variance a‘z,(R) of the packing (or volume)
fraction within a spherical window of radius R that is placed
randomly into the sample. For hyperuniform heterogeneous
materials, this variance goes for large R faster to zero than the
inverse of the volume of the observation window, i.e., faster
than 1/R“. This in contrast to, e.g., overlapping spheres or
equilibrium hard spheres.

Here we determine the spectral density not only to
examine the hyperuniformity of the MRJ sphere packings
but also to obtain the Fourier representation of the two-
point correlation function, which is useful for evaluating
rigorous bounds on physical properties. We compare the
spectral density of the hyperuniform MRJ packings to the
nonhyperuniform overlapping spheres and equilibrium hard
spheres.

For overlapping spheres, the spectral density can easily
be calculated by numerical integration using the explicit
analytical expressions for the two-point correlation function
given, e.g., in Ref. [39, p. 122]. For hard-sphere packings, there
are two different approaches to compute the spectral density,
as described in Ref. [48]: first, by an explicit calculation of the
Fourier transform of the autocovariance function [cf. Eq. (11)];
second, by a direct Fourier transformation of the indicator
function of the particle phase [cf. Eq. (13)].

In the first approach, the Fourier transform is calculated by
anumerical integration of the curves in Fig. 3 (after subtracting
the long-range limit). Because the simulation boxes are finite,
a cutoff is assumed for the autocovariance yx,(r), which
induces a minimal absolute value k of the wave vector that
is reliable [72].

In the second approach, we use the relation between the
Fourier transform of the indicator function and the structure
factor; see Eq. (14). Therefore, no binning or discretization
of the sample is needed. Moreover, we consider the spectral
density as a function of the wave vector k and explicitly take
the nonorthogonal simulation boxes into account. We evaluate
for each sample the structure factor for all wave vectors that are
allowed in a simulation box with periodic boundary conditions.
These are integer multiples of the reciprocal lattice vectors.
Collecting the data for all samples, we finally bin the results
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FIG. 6. Spectral densities of the overlapping spheres (bottom),
equilibrium hard-sphere liquid (center), and MRJ sphere packings
(top): For the hard spheres, they are calculated by a Fourier
transformation of either the autocovariance (solid line) [see Eq. (11)]
or directly of the sphere packings themselves (crosses) [see Eq. (14)].
For the overlapping and equilibrium hard spheres, the dashed
horizontal lines indicate the value in the infinite wavelength limit. The
MR state is hyperuniform; therefore, the structure factor vanishes for
k — 0. For both hard-sphere systems, each analyzed packing contains
10 000 spheres. The dashed vertical lines indicate the zeros of the
spectral densities that are universal for all disordered hard-sphere
packings.

for the spectral density with respect to the absolute value k of
the wave vector with a bin width of Ak ~ 0.133.

Figure 6 compares the results for the spectral density from
the two different approaches. They are in excellent agreement
with each other for both the MRJ (top) and equilibrium hard
spheres (center). Tables IV and V provide estimates of the
spectral density via the second approach for equilibrium or
MRJ sphere packings, respectively; see also the Supplemental
Material for estimates of the spectral density for further
absolute values of the wave vector [68].

A test for the accuracy of our data is given by the zeros of
the spectral density. According to Eq. (14), the zeros of the
spectral density are given by the zeros of the structure factor
and the zeros of (k). The latter are given by the zeros of
the Bessel function Jy /z(kTD); see Eq. (15). Therefore, they are
universal for all disordered packings free of any Dirac delta
(or Bragg) peaks in their spectral density [69,73]. The dashed
vertical lines in Fig. 6 indicate these exact positions. They are
in excellent agreement with the simulation results.
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TABLE 1IV. Spectral density derived from the direct Fourier
transformation of the periodic simulation box (corresponding to the
crosses in Fig. 6) of the equilibrium hard-sphere liquid. The allowed
values of the wave vector are binned with respect to their absolute
value k and the resulting spectral densities are then averaged over 100
different packings. The third and sixth column display the standard
error of the mean.

kD %,(k)/D* olx,(0))/D* kD  %,(k)/D* olX,()]/D?
0.6 540x107°  1x10™* 9.6 236x10™*  6x1077
1.1 5.60x107°  1x10™* 102 647x10™*  2x107°
1.7 588x107°  7x10™ 108 1.14x107°  2x107°
23 6.17x107°  6x107° 113 1.63x107°  3x107¢
28 6.68x107°  5x107° 119 1.98x107°  4x10°°
34 7.37x107° 4x107° 125 1.93x107°  4x10°°
40 842x107°  4x107°  13.0 1.46x107°  3x107°
45 1.00x1072  5x107°  13.6 8.60x107*  2x107°
51 131x1072  6x107° 142 3.66x10™*  1x107¢
57 1.83x1072  6x107° 147 9.56x10°  3x1077
6.2 290x1072  1x10™* 153 5.09x107°  4x107®
6.8 3.46x1072  1x10™* 159 1.74x10™  1x1077
74 1.32x1072  4x107° 164 8.61x107°  5x1077
79 2.68x107°  8x10°°  17.0 1.75x107*  1x10°°
8.5 3.23x107*  Ix10° 176 2.71x10™*  2x10°°
9.1 8.60x107%  5x10°"

In the limit of small wave vectors k — 0, the structure factor
(and thus the spectral density) for equilibrium hard-sphere
liquids can be related to the isothermal compressibility k7 =
0~ (dp/dp)r (with pressure p, temperature T, and number
density p),

S(0) = pkpTkr, (32)

TABLE V. Spectral density derived from the direct Fourier
transformation of the periodic simulation box (corresponding to the
crosses in Fig. 6) of the MRJ hard-sphere packings. The allowed
values of the wave vector are binned with respect to their absolute
value k and the resulting spectral densities are then averaged over 14
different packings. The third and sixth column display the standard
error of the mean.

kD x,(k)/D* olg,(k)]/D* kD  %,(k/D* olx,(K)]/D’
0.6 9.36x107* 9x1073 102 6.03x107* 1x1073
12 1.63x1073 2x107* 10.8 9.67x10~* 2x1073
1.8 2.29x1073 1x107* 11.4 1.35x1073 2x1073
24 2.43x1073 2x107* 120 1.69x1073 3x1073
3.0 2.96x1073 2x107* 126 2.02x1073 2x1073
3.6 3.39x1073 9x1073 132 1.86x1073 2x1073
42 3.83x1073 1x107* 13.8 1.11x1073 1x1073
48 437x1073 9x1073 144 4.13x107* 3x107°
54 5.55x1073 2x107* 150 6.08x107° 1x107°
6.0 8.10x1073 2x107* 156 5.31x107° 2x1077
6.6 1.38x1072 4x107* 162 6.41x1073 7x1077
7.2 2.35x1072 Tx107* 16.8 1.41x10~* 1x107¢
7.8 1.34x1072 4x1074 17.4 2.17x107* 2x107°
8.4 1.10x1073 4x1073 18.0 2.99x10~* 5%107°
9.0 9.28x107° 5%1077 18.6 3.77x107* 4x1076
9.6 2.37x107* 6x107° 19.2 4.08x107* 8x107°
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where kg is the Boltzmann constant. The right-hand side can
be well estimated by using accurate analytical approximate
formulas for the pressure of equilibrium hard spheres [74]. This
is indicated by the dashed horizontal line in Fig. 6. Because the
hard-sphere liquid has a positive compressibility, the spectral
density does not vanish in the limit of infinite wavelength
X, (0) > 0and hence is not hyperuniform, which translates into
a volume-fraction variance that asymptotically decreases like
R~3. This is qualitatively the same behavior as for overlapping
spheres (see bottom of Fig. 6, where the dashed gray line
indicates ¥, (0)/D?).

In contrast to this, the spectral density for the hyperuniform
MRUJ packings should vanish for short wave vectors according
to the definition in Eq. (31). Of course, for any finite packing
derived from simulations there is a smallest accessible wave
vector at which reliable estimates of the spectral density can be
measured. For a careful extrapolation of the spectral density to
k = 0 as well as a detailed discussion of binning effects, noise
at the smallest wave numbers, and numerical and protocol-
dependent errors, see Ref. [75].

Within the scope of this paper, we only compare the
binned spectral densities of the MRJ packings to those of
the equilibrium hard spheres. We use simulations with the
same system size and therefore analyze in this section 14 MRJ
packings with 10 000 spheres. For small wave vectors, the
spectral density of the MRJ state is distinctly smaller than that
of the equilibrium hard-sphere liquid. The former vanishes at
least approximately as k — 0.

V. PORE-SIZE DISTRIBUTION

The pore-size distribution contains at least a coarse level
of connectedness information about the matrix phase [39]. Its
lower-order moments arise in bounds on the mean survival and
principal relaxation times [37,38].

We estimate the complementary cumulative pore-size
distribution F(§) and the exclusion probability Ey as an
equivalent representation. We compare the results for MRJ
sphere packings not only to those for overlapping and equi-
librium hard spheres but also for crystalline sphere packings.
Moreover, we directly estimate the first and second moments
of the pore-size distribution.

A. The complementary cumulative pore-size distribution

Figure 7 compares F(8) for the disordered systems of MRJ,
equilibrium, and overlapping spheres to those of crystalline
sphere packings; e.g., see Ref. [76]. These are perfectly
ordered packings of monodisperse spheres that are arranged
either on a face-centered cubic (fcc) or on a body-centered
cubic (bec) lattice. The radius of the spheres is chosen such
that neighboring spheres touch each other. The fcc packing
corresponds to the densest possible sphere packing [2]. The
bee packing has the smallest known covering radius; see also
the discussion in Sec. V C.

For the MRJ, equilibrium, and overlapping spheres, we
estimate F(§) by a simple Monte Carlo sampling. Random
points are placed in the matrix phase uniformly distributed
(107 points per sample). For each point, the smallest distance
to a sphere is determined and recorded. We determine the
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FIG. 7. Complementary cumulative pore-size distribution F(3)
in MRJ sphere packings compared to those in overlapping and
equilibrium hard spheres as well as face-centered-cubic (fcc) and
body-centered-cubic (bce) lattices: the solid (black) and dashed (blue)
lines show the analytical curves for overlapping and equilibrium hard
spheres, respectively. They are in excellent agreement with simulation
results (black and blue points). The MRJ packings produced by the
Torquato-Jiao (TJ) sphere-packing algorithm are also compared to
results from molecular dynamics (MD) simulations; see Ref. [29].
The (quantitative) difference can be explained by slightly different
global packing fractions. The inset shows that there is a strong
variation in F'(§) if the TJ results are restricted to packings with either
slightly larger or smaller global packing fractions than the average
global packing fraction.

empirical histogram weighted by the total number of samples
and the bin width as an estimate of the pore-size distribution.
The complementary cumulative pore-size distribution follows
immediately according to Eq. (17).

For the overlapping spheres, we compare in Fig. 7 these
numerical results to the analytic curve. The latter follows
immediately from the definition of a Poisson point process,
that is, the point process that describes the positions of
the sphere centers [59]. For the equilibrium hard-sphere
liquid, we compare the numerical results to an accurate
analytical approximation [39,77,78]; see also Refs. [38,79].
The numerical estimates agree very well with the analytical
predictions.

As expected, F'(§) decreases faster for the crystalline sphere
packings than for the disordered systems. Moreover, the
complementary cumulative pore-size distribution decreases
faster for the MRJ than for the equilibrium or overlapping
spheres. Note that in the latter systems the spheres occupy the
same volume fraction as in the MRJ sphere packing.

For a two-phase medium, the pore-size distribution P(§)
always vanishes for § — oo. For the equilibrium hard-sphere
liquid below the freezing transition and for the overlapping
spheres, P(8) > 0 vanishes exponentially for large pore sizes
§. However, P(§) > 0 and thus F(§) > O for all finite values
of §. This is in contrast to the MRJ sphere packings and also to
the crystalline-sphere packings studied here. These packings
are saturated; that is, no additional sphere can be inserted in
the system without intersecting any other sphere. This implies
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that P(8) is zero at least for all § > R, and thus, F(§) = 0 at
least for all § > R.

InFig. 7, we also compare our results for MRJ packings pro-
duced by the Torquato-Jiao (TJ) sphere-packing algorithm [80]
to those from Ref. [29], which used molecular dynamics (MD)
simulations. The latter packings are also strictly jammed and
saturated; for more details, see Ref. [29]. The complementary
cumulative pore-size distribution decreases faster for the latter
system, which can be expected for two reasons. The MD
simulations were carried out at a slightly larger packing
fraction than that of the MRIJ packings produced by the TJ
algorithm. The inset in Fig. 7 shows how a slight change in the
packing fraction can strongly affect F'(§). The complementary
cumulative pore-size distribution is shown for only those
packings produced by the TJ algorithm where the final packing
fraction is either slightly below or slightly above the average
packing fraction of all samples. However, the decrease of F(3)
is not only determined by the packing fraction, as can be
seen from the comparison of the fcc and bcec lattices. The
arrangement of spheres is crucial, and F'(8) decreases faster for
a more ordered packing at the same packing fraction. Because
the TJ algorithm is, in contrast to the MD simulation, explicitly
designed to find a maximally disordered sample, the latter is
expected to be more ordered which results in a faster decrease
of F(3).

B. Mean pore size and second moment

For diffusion-controlled reactions among static traps, the
mean survival time t and the principal relaxation time 7 are
intimately related to the first and second moments of the pore-
size probability density function [38].

In particular, the mean survival time, which is the mean
time that a Brownian particle can diffuse in the void phase
before it hits the solid phase, is bounded from below by the
mean pore size [37]. Moreover, if the mean survival time 7 is
rescaled by the diffusion constant D and the diameter D of a
single sphere, it can be very accurately predicted by the mean
pore size via a universal scaling law [36].

The principal diffusion relaxation time, which is the largest
diffusion relaxation time, is bounded from below by the second
moment of pore-size function [38,39]. We evaluate both the
prediction of the mean survival time and the bound on the
principle relaxation time in the third paper of this series.

Moreover, the second moment is proportional to the so-
called “quantizer error” [76]. The latter is defined as the mean
squared distance from a random point in space to the nearest
point in the point process. Minimizing this quantizer error is,
e.g., important for an optimal meshing of space for numerical
applications [81], coding and cryptography [82], and digital
communications [83].

We estimate the first and second moments of the pore-size
distribution by the sample mean and sample variance of the
pore sizes found in a MC sampling as described above in
Sec. V A. For the overlapping spheres (¢ = 0.636), we esti-
mate (8) ~ 0.115 D and (82) & 0.021 D?; for the equilibrium
liquid (¢ = 0.478), (8) ~ 0.098 D and (8%) ~ 0.014 D?, and
for the MRJ sphere packings (¢ = 0.636), (§) =~ 0.063 D and
(8%) &~ 0.006 D?. The statistical errors in units of D or D? are
less than 1073, The values for the overlapping spheres agree
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with the analytical results and those for equilibrium spheres
agree with the corresponding analytical approximation.

C. Exclusion probability

So far, we have considered the MRJ packings, as well as the
equilibrium liquid and the overlapping spheres, as a two-phase
medium formed by the spheres and the surrounding matrix.
Now we analyze the point processes that is formed by the
sphere centers. As explained in Eq. (20) in Sec. IIB 1, the
complementary cumulative pore-size distribution F(§), which
characterizes the two-phase medium, is trivially related to the
exclusion probability Ey (r), which analyzes the point process.
For the equilibrium and MRIJ sphere packings, Tables II
and III list numerical values of the exclusion probability; see
also the Supplemental Material for estimates of the exclusion
probability at more radial distances [68].

Figure 8 shows Ey(r) using the data for F(§) in Fig. 7.
However, the unit of length is different. Now we compare
point processes with unit number density by choosing p~!/3
as the unit of length, where p is the number density.

Interestingly, the value of r at which Ey (r) first ceases to
have support defines the covering radius [76]. If to each point
in a point process a sphere of the same radius is assigned,
the covering radius R, is the minimal radius that is needed to
cover the entire space. In other words, no point in R is further
away from a point in the point process than R.; therefore,
Ey(r) =0forall r > R, if R, is bounded.

In three dimensions, the bcc lattice has the smallest
known covering radius at unit density. Therefore, its exclusion
probability decreases faster than that of the fcc lattice, although
the latter has a higher packing fraction. Torquato [76] provides
the exact values for the covering radii of both lattices: for bcc,
Re/h = +/5/25/3 22 0.7043 (which corresponds to R./D =
V5/3/2 ~ 0.6455), and for fec, R./r = 1/2'3 ~0.7937
(which corresponds to R./D = 1/«/5 ~ 0.7071).

1
1072
~—
> 10~4 1
ﬁ 0.9 1 :
Overlapping ¢ = 0.636 =
106t Equilibrium ¢ = 0478 6+ : E
MRJ (TJ) ¢ = 0.636 ~5~i ]
Donev et al., 2005 ¢ = 0.644 ! 4
‘ i )
1078 N feec ¢ = 0.740 i 2 ]
bee ¢ =0.680 =+ %
0 0.4 0.8 1.2
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FIG. 8. The exclusion probability Ey(r) of the sphere centers
in MRJ packings is compared to those in overlapping spheres,
equilibrium hard spheres, and crystalline sphere packings (fcc or
bee). The point patterns are compared at unit density (the unit of
length is given by p~!/3, where p is the number density); for details,
see Fig. 7.
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For the MRIJ sphere packings, there appears to be a cutoff
at r 2 A, which is related to the saturation as explained in
Sec. V A. However, for Ey(r) < 1078 the statistical errors
become too large for a numerical precise estimate of the
covering radius only via the exclusion probability Evy (7).

VI. LOCAL NUMBER DENSITY FLUCTUATIONS

The analysis of the spectral density j,(k) for k — 0
showed that the random two-phase medium formed by the
spheres in the MRIJ packings is hyperuniform in contrast
to the equilibrium and overlapping spheres; see Sec. IV.
Therefore, the point pattern formed by the sphere centers in
the monodisperse MRJ packings must also be hyperuniform;
see Sec. II B 2. The hyperuniformity of a point pattern can be
shown by studying the number density fluctuations, that is,
the fluctuations of the number N of points within a spherical
observation window that is randomly placed in the systems,
and showing that it decays for large R more slowly than R in
three dimensions.

First, we study for large radii R the qualitative behavior of
the probability functions fr(N) of the number of points N.
Then we analyze the scaling of the number variance ol%,(R)
with the radius R. The latter again reveals the hyperuniformity
of the MRJ sphere packings.

A. Number probability distribution

First, we estimate the probability function of the normalized
number of points; that is, we subtract from N the mean number
of points (N)g and divide by the square root of the number
variance 01%,(R), where the expectation and the variance are
also estimated by the sample mean and sample variance.
Therefore, we determine the estimated probability density
function (PDF) [84] fr of the number N of points of the
pattern that lie within a test ball of radius R placed randomly
in the system.

First, we randomly place a point uniformly distributed
in the simulation box. It serves as the center of a score of
test balls with different radii R ranging from the maximal
radius [85] to a fraction of the diameter of a sphere in the
sample. For each radius, the number of sphere centers inside
the test ball is recorded. The PDF can be estimated by repeating
this numerical experiment not only for the different samples
but also by distributing several random centers inside a single
sample. Note that the estimates of fx(N) at different radii R
are correlated with each other.

Figure 9 shows the normalized PDFs for the overlapping,
equilibrium, and MRIJ spheres. As mentioned in Sec. V A,
the centers of the overlapping spheres form a Poisson point
process [59]. Therefore, fr(N) is by definition a Poisson dis-
tribution with mean value (N)g = ,04?” R3, whichis depicted in
Fig. 9 by dashed lines. For large radii R — oo, the distribution
of the normalized number of points inside the test ball can be
approximated by the normal distribution (depicted as a black
line). However, even for large radii of about three times the
diameter of a single sphere, there are significant deviations
from a normal distribution.

In contrast to this, the rescaled probability distributions
for the equilibrium and MRJ sphere packings can be very
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FIG. 9. The number probability function fz(N) is rescaled by the square root of the number variance o2(N) and plotted as a function
of the normalized number of points N inside a spherical observation window of radius R that is randomly placed in the sample. For (a)
overlapping spheres, (b) equilibrium hard spheres, and (c) MRJ sphere packings, the rescaled number probability functions are compared to the
probability density function of the normal distribution (solid black line). For overlapping spheres, fz(N) corresponds to a Poisson distribution
(dashed colored lines). It converges for an increasing test sphere radius R to a normal distribution, but slowly compared to the equilibrium
and MRIJ sphere packings. For the hard-sphere systems, fz(N) can well be approximated by Gaussian probability density functions already
for R > 1.5D (represented by solid circles instead of open squares), where A/D ~ 1.03 and A/ D =~ 0.937 for the equilibrium or MRJ sphere

packings, respectively.

well approximated by a normal distribution even for relatively
small radii R. Only for radii R < 1.5D (denoted in Fig. 9 by
open squares) are there deviations because of the nonoverlap
constraint. So, from the simulations we can conjecture that
for the equilibrium hard-sphere liquid and MR]J state a central
limit theorem holds for the number of points in a test ball. It
was shown that the distribution of “local volume fraction” for
particle systems tends to the normal distribution for sufficiently
large windows [49].

A Gaussian distribution is determined by its first and
second moments. Therefore, the number density p and number
variance af,(R) are the main parameters of the number
probability function fr(N).

B. Number variance

From the MC sampling of the PDF of the number of points,
the sample variance provides an estimate for the number
variance Gﬁ(R) (as mentioned in the previous Sec. VIA).
Recall that the estimates at different radii R are correlated.

An important choice is that of the number of throws in a
finite simulation box for a fixed radius R [75]. A too-small
number of throws leads to large statistical errors. If there were
too many throws, a systematic bias could arise because the
same data are sampled several times but the throws are assumed
to be independent.

A benchmark test to check for such a bias is the comparison
of numerical estimates of o,%,(R) for overlapping spheres to
the corresponding analytic curve. As mentioned above, their
sphere centers form a Poisson point process. By definition, the
number variance is in this case equal to the mean number of
points o3 (R) = (N)g = pZ R>.

If for each radius R a different number of throws is
chosen, the maximum possible statistics can be used without
introducing a systematic bias at large radii. Here we choose as
a simple and efficient criterion for the number of throws that
the expected volume fraction of the sample covered by the test
balls remains below a fixed value ¢p. This choice is robust in
the sense that similar results are obtained for reasonable values
of ¢ 5. We here choose ¢ = 0.8. For our choice of the number

of throws, the numerical estimates agree for the benchmark test
of overlapping spheres very well with the analytical curve; see
Fig. 10.

Figure 10 compares the number variance for the hy-
peruniform MRIJ packings to that of the nonhyperuniform
overlapping and equilibrium spheres. The number variance
for the MRIJ packings is for radii R > 2A not only smaller than
for the other two more disordered systems, but, most im-
portantly, the scaling is qualitatively different. According to
Eq. (23), the behavior of the structure factor (and thus of the
spectral density) in the limit k — 0 is related to the asymptotic
behavior of density fluctuations in spherical observation

180F - Ovér]apping
xR? e Equilibrium
= MRJ (TJ)
Donev et al., [29]
__120r _
&
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60
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FIG. 10. The number variance o3(R) for MRJ sphere packings
as a function of the radius R of the test sphere is compared to those
of overlapping and equilibrium hard spheres. The solid black line
shows the analytical curve for the overlapping spheres, which is
proportional to R3. The data for the equilibrium hard spheres agree
well with a polynomial b, R? + b3 R? (solid blue line) but can clearly
not be described by the fit of only a parabola (dashed line). This is
in contrast to the MRJ data, which agrees well with a parabola (solid
red line). Moreover, the extrapolation of the parabola is in perfect
agreement with the results from MD simulations of MRJ packings
with up to 106 spheres; see Ref. [29].
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windows in the limit of infinite radius. The number variance for
the hyperuniform MRJ state grows for large radii R slower than
the volume of the test ball, in contrast to the nonhyperuniform
sphere systems. When we fit a polynomial to the numerical
estimates to study the scaling behavior, the fit is not applied to
very small radii R but only to those radii for which the number
probability functions can well be approximated by a Gaussian
probability density function; see Sec. VI A.

As explained above, the number variance for the over-
lapping spheres is analytically known to be proportional to
R3. The data for the hard-sphere liquid is well approximated
by the fit of a polynomial b, R? + b3R* (solid blue line in
Fig. 10). However, a fit of only a parabola ocR> (dashed
line) is not sufficient to describe the data. Therefore, the
leading asymptotic behavior of the number variance for the
hard-sphere liquid is also R3. It is clearly nonhyperuniform.

This is in contrast to the MRJ packings. The number
variance o2(R) for to the TJ data of hyperuniform MRJ
spheres agrees well with the fit of a parabola (solid red line
in Fig. 10). Moreover, the results for the TJ data with 2000
spheres per packing are in very good agreement with those
from MD simulations with up to 10° spheres [29]. This holds
not only in the range accessible by the TJ samples, but also the
extrapolation of the quadratic fit to larger radii is in excellent
agreement with the number variance obtained from the MD
simulations of MRJ packings.

VII. CONCLUSIONS AND OUTLOOK

We have studied in detail the global and local structure
of maximally random jammed (MRJ) sphere packings. We
considered it both as a two-phase random medium and as
a point pattern that is formed by the sphere centers and
evaluated certain structural characteristics accordingly. In the
first case, we have determined the two-point, surface-void,
and surface-surface correlation functions, the spectral density
and the pore-size distribution. In the second case, we have
estimated the number probability function and number vari-
ance. These structural characteristics were then compared to
those of equilibrium hard-sphere liquids as well as completely
uncorrelated overlapping spheres.

The correlation functions and pore-size distribution are re-
lated to effective physical properties of the two-phase random
medium, which we will evaluate in the third paper of this series.
Our results, for example, allow predictions of the effective
transport [33-36], diffusion and reactions constants [37,38],
as well as mechanical [39] and electromagnetic properties
[40—42]. Thereby, we can compare the (physical) behavior
of a hyperuniform system, like the MRJ sphere packings, to
that of nonhyperuniform disordered systems. From the novel
and unique structural properties of the hyperuniform materials
can follow interesting physical properties, like isotropic band
gaps [86].

We have derived explicit expressions of the correlation
functions of finite packings, e.g., from simulations. They are
only functions of the radial distances between the spheres,
which allows for a both accurate and fast calculation of these
correlation functions.

By comparing the two-point, surface-void, and surface-
surface correlation functions of the MRJ packings to those
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of the overlapping and equilibrium spheres, we have found
distinctive signatures of the contacts between spheres in the
MRI state. For example, there are additional discontinuities
in the derivatives of the correlation functions, which we
have rigorously related to the contact Dirac delta function
contribution to the pair correlation function for MRJ packings.

As described in Sec. II C, the correlation functions evalu-
ated here are special cases of the far more general canonical
n-point correlation functions. Future studies of MRJ packings
could include generalizations of these functions for test
particles with a variable size, which have been shown to
contain considerably more information [60].

The Fourier transform of the autocovariance, which follows
from the two-point correlation function, reveals the hyper-
uniformity of the MRJ sphere packings. The spectral density
vanishes in the limit of infinite wavelengths (which is here
equivalent to a vanishing structure factor). This is in contrast
to the equilibrium hard spheres because of their positive
compressibility.

For a rigorous test of hyperuniformity given only a finite
sample of the MRIJ state, the spectral density would have to
be extrapolated to k — 0 [75]. It exceeds the scope of this
article, but a statistical test could easily be developed to select
the appropriate model of the vanishing structure factor or
estimate a remaining finite value of the structure factor at
k = 0 as well as the statistical error. Because the functional
values of the spectral density at a given wave vector k are ex-
ponentially distributed, a maximum likelihood fit corresponds
to an iterated weighted least square fit [87]. Such an approach
could detect hyperuniformity possibly even from relatively
small samples.

In the pore-size distribution (or more precisely in the
complementary cumulative distribution), we find a distinctive
difference in the structure of MRIJ packings that are either
created by the TJ algorithm or by MD simulations. The
complementary cumulative distribution function decreases
slower for the samples of the first than for the latter algo-
rithm. This is because the MD simulations have a slightly
larger packing fraction and because they tend to be more
ordered.

The pore-size distribution, or equivalently the exclusion
probability, is also related to the covering problem [76]. There-
fore, we compare the numerical estimates of the MRJ packings
not only to the equilibrium and the overlapping spheres but also
to perfectly regular lattices. A more regular system often tends
to exhibit a faster decrease of the complementary cumulative
distribution function.

An open question is whether there are nontrivial necessary
and/or sufficient conditions for hyperuniformity based on
the pore-size distribution (besides the trivial observation
that a completely empty or filled system is hyperuniform).
There are probably no sufficient conditions; for example,
a finite covering radius is not a sufficient condition for a
hyperuniform point process. A counterexample would be a
superposition of a nonuniform Poisson point process and a
BCC lattice. However, there might be necessary conditions
on the asymptotic behavior or covering radius of the point
process.

Concerning the number density fluctuations, we conjecture
a central limit theorem for the equilibrium and MRJ hard-
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sphere systems. Already for relatively small radii R, the
distribution of the normalized number of points inside a test
ball of radius R can be well approximated by a Gaussian
distribution. These observations are consistent with previous
results in which it was shown that the distribution of local
volume fraction for various particle systems tends to the
normal distribution for sufficiently large windows [49].

Therefore, besides the number density the only nontrivial
moment of the number probability function is the number
variance. Its scaling with the radius R can be related to the
structure factor. If it grows slower than the volume of the
test ball, the point process is hyperuniform. We compare the
scaling for the overlapping and equilibrium spheres to that of
the hyperuniform MRJ packings. A prediction from relatively
small samples is difficult. Nevertheless, we can demonstrate
that a fit of a quadratic function is in good agreement with
the results for the MRJ packings in contrast to the equilibrium
hard-sphere liquid.

A crucial step in this analysis is the choice of the number of
throws of the test ball. Too many throws in a finite sample can
lead to a systematic bias. Here we have chosen a conservative
estimate based on a comparison of the numerical results for
the overlapping spheres to the analytic curve. In a future study,
either a detailed analysis of the allowed number of throws or
of the potential bias could help to significantly improve the
statics that can be derived from a relatively small sample.
This would be very valuable to detect hyperuniformity, e.g.,
in experimental observations. Also very interesting would be
a rigorous hypothesis test or model selection that compares
different scalings and takes the correlation between different
radii R into account.

In future work on the number variance, it would be
interesting to compare the performance of the direct estimate
via the sample variance, which is used here, to an estimate
based on the so-called excess coordination AZ, which is the
average excess number of points compared to the ideal-gas
expectation [29]. For a square lattice, the excess coordination
is connected to the so-called Gauss circle problem.

Recently, hyperuniformity was generalized to interfa-
cial area fluctuations, random scalar fields, and statistically
anisotropic many-particle systems and heterogeneous me-
dia [69]. These concepts combined with the observations
from this article call for further extensions and pose new
questions. For example, valuable insights might be gained by
comparing the spectral density of MRJ sphere packings (see
Sec. IV) to the corresponding spectral density of the surface
defined in Ref. [69]. (The latter should also vanish for the
hyperuniform MRIJ sphere packings in the limit of infinite
wavelengths.)

Moreover, the variance USZ(R) of fluctuations in the surface
area (similar to the number variance in Sec. VI) is related to
the surface-surface correlation function Fi,(r). The explicit
expressions for finite packings of hard spheres, which we
have derived here, can help to efficiently compute USZ(R).
Even another generalization could be introduced by relating
also the surface-void correlation function Fj,(r) (studied in
Sec. III C) to a variance of fluctuations in finite observation
window similar to USZ(R).

Our analysis provides insight into and links different
problems of interest in various fields of research like material
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science, chemistry, physics, and mathematics. The structural
descriptors studied here determine a host of different effective
properties of random two-phase or particulate medium, in-
cluding transport, mechanical, electromagnetic, and chemical
characteristics. For point patterns, some of them are linked to
the quantizer error or covering problem as well as the Gauss
circle problem. The singular property of hyperuniformity is of
special fundamental interest and has already seen surprising
applications.
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APPENDIX A: ANALYTICAL CORRELATION
FUNCTIONS OF FINITE HARD-SPHERE PACKINGS

Given a specific configuration of a finite packing of N
hard spheres, more precisely all pairwise distances p;;, we
here derive explicit analytical formula for the two-point cor-
relation function S,(r), the surface-void correlation function
F,(r), and the surface-surface correlation function Fy(r).
For convenience, here we only show the calculation for
monodisperse sphere packings, but the calculations can easily
and straightforwardly be generalized to any polydisperse
packing of hard spheres. Moreover, the approach can be easily
adapted to various edge corrections. Here we only consider
periodic boundary conditions.

1. Analytical two-point correlation function of finite
hard-sphere packings

The analytical calculation of the two-point correlation
function follows closely the concept of the Monte Carlo
sampling as described, e.g., in Refs. [39,88]. There, a test
pattern that consists of points on the boundary of a sphere of
radius r is repeatedly and randomly placed onto the sample.
As described in Sec. III B, the two-point correlation function
S,(r) is the probability that two points at a distance r are found
in the particle phase, i.e., within one of the spheres. The Monte
Carlo sampling estimates this probably by the frequency with
which a point on the outside of the test pattern and its center
both fall inside the particle phase. For a hard-sphere packing,
this hitting probability is here calculated analytically (given
the pair distances p;; of the spheres).

For a system of hard spheres the probability that a random
point falls inside sphere i is ¢ /N, where ¢ is the fraction of
space occupied by the spheres and N the number of spheres.
Given a point inside sphere i, the conditional probability that
another random point at a distance r is inside sphere j is
denoted by p;;(r). The two-point correlation function can then
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FIG. 11. A two-dimensional section through the spheres Bg(c;)
(solid line) and B,(x) (dashed line): The dashed red line indicates
points at a distance r from x that lie inside sphere j; if the radii r
and R and the distance 6 := ||x — ¢;|| are given, the cosine of the
angle w follows from the law of cosines; this, in turn, allows for the
computation of the area A[dB,(x) N Bg(c;)].

by expressed by
N ¢ N ¢ N ¢ N
Sar) =Y P =0 D P+ 55 YD pii()
i=1 j=1 i=1 i=1 j#i
=6 ~(r)+2—¢§:z () (Al)
= QDii N Pij s

i=1 j>i

because p;; is the same for all spheres and p;; = pj;.

For the calculation of p;;(r), we must first determine the
probability that for a given point x (in sphere i) at a distance
6 of the center ¢; of sphere j (with radius R), another point,
which is at a distance r of x, is inside the sphere j; see Fig. 11.
This probability is denoted by f;. g(6). It is simply the fraction
of the surface area of a sphere with radius » centered at x that
lies inside sphere j,

A[dB,(x) N Bg(c;)]
42

Jrr(®) = , (A2)
where B,(x) denotes, as usual, a ball of radius » with center
x, and the argument of the function indicates that it depends
only on the distance § := ||x — ¢;][.

There are two cases where f, g(8) # 0. First, if the sum
of radius r and distance 6 is less than R, B.(x) C Bgr(cj)
and f, g(6) = 1. Second, if |R — §| < r < R + 4, the fraction
depends on an angle w between (x — ¢;) and the intersection
line of the two spheres Bg(cj) and B,(x); see Fig. 11. The
cosine of this angle can be expressed by §, r, and R using the
law of cosines:

824+ r2—R?
2r8 '

The corresponding surface area of 9B.(x) N Br(c;) is then
given by

cosw = (A3)

A, r(8) = 2nr2/ désin6 = 27r*(1 — cos w)
0

R? — 8% —2r8 + r2)
2ré
R — (5§ —r)

= _ A4
Tr 5 (A4)

= 27r?
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using the rotational symmetry around the axis x —¢; and
Eq. (A3). Therefore,

1 ifr+8 <R,
frr@) = { B=C0" it |R 5| <r < R+8, (AS)
0 else.

For the conditional probability p;;(r), we only assume that
the initial random point x is any point in sphere i. So it is the
integral of f, g(8) over all positions x in sphere i divided by the
volume vg := 47/3R3 of the sphere. A case-by-case analysis
is needed. For p;;(r) (and thus § < R), this integration of
Eq. (AS) results in

1 R
pi(r) = — / 84708 f, 4(5)
Ur Jo

= 161R3 QR —r)*(r +4R)OQR — 1), (A6)
where ®(2R — r) is the Heaviside step function.

The calculation for p;;(r) (and thus & > R) for two
different spheres i # j at a distance p;; := |l¢; — ¢;|| can
be tremendously simplified by using suitable coordinates. To
integrate the sphere Bg(c;), spherical coordinates should be
used. However, ¢; should be chosen as the origin instead of
¢;. Then the sphere i is foliated in shells with a constant
distance & to c¢; (the center of sphere j). (This distance
can, of course, take on values only between p;; — R and
pij + R.) On each sheet, the function f. z(6) is constant, and
the integral over the sheet is simply its surface area, which
was already calculated in Eq. (A4) (only the parameters must
be exchanged). A straightforward case-by-case analysis then
provides the result. The probability p;;(r) can be expressed
using the indicator function 1 Ip,,,R(r)v which takes on the value

unity on I, g := [0i; — 2R, p;j + 2R) and zero otherwise:

1 pij+R
pij(r) = — d8As r(pij) fr.rR()

VR Jpi;—R
1 pij+R R2 — i‘_52

= — dsrs =PI O )
VR Jp;—R Pij
Ut R e gy

o 160R3 p;jr m A

x [Ir = pijI* + 2RGIr — pij| +2R)]. (A7)

Inserting Egs. (A6) and (A7) in Eq. (A1) yields the final result.
In a finite simulation box with periodic boundary condi-
tions, there is, of course, a maximal radius beyond which the
two-point correlation function cannot be calculated because
different representations of the same sphere would contribute.
The here presented Eqgs. (A6) and (A7) in Eq. (A1) are only
valid for values of r smaller than half of the minimum width
of the simulation box /,, minus the diameter of a sphere D,

r <hy, — D. (A8)

If necessary, the calculation could be modified to make
it possible to calculate S,(r) also for h, — D <r < hy,.
Therefore, different representations of the same sphere must
be taken into account, such that the minimal distance of the
points in two different spheres is used.
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2. Analytical surface-void correlation functions
of finite hard-sphere packings

The surface-void correlation function Fj,(r) of hard-sphere
packings can be derived analytically in a very similar calcula-
tion.

For convenience and a better comparison to the calculation
in Sec. 1 of this Appendix, we calculate in this section the
correlation of the particle phase and the interface F$(r). In
other words, the “void” phase is formed by the spheres. As
discussed in Sec. III C, the corresponding correlation function
Fy,(r) of the intermediate space between the spheres and the
interface can easily be derived from F®)(r) and the specific
surface area s according to Eq. (7).

If the surface-void correlation function F($)(r) is estimated
from Monte Carlo simulations [39,67], a finite shell of
thickness € is defined for each sphere i with center ¢; and
radius R:

Sr.e(c;) == Br(c;) \ Br—c(ci).

Then the frequency is estimated that a random point is inside
such a spherical shell and that another random point at a
distance r from the first point is inside of any particle. In the
limit € — 0, the ratio of this hitting probability and the shell
thickness € converges to the surface-void correlation function
F®(r) [and Sg (c;) converges to d Bg(c;) of sphere i].

Because the probability of a point hitting the spherical shell
vanishes and the ratio needs to be extrapolated, this procedure
is numerically rather expensive. As mentioned above, even
small statistical errors can lead to huge errors in the bounds on
physical parameters.

Here we derive the surface-void correlation function
analytically for a monodisperse hard-sphere packing given
the pair distances p;; of the spheres. As for the two-point
correlation function in Sec. 1 of this Appendix, the calculation
can easily be generalized to any polydisperse hard-sphere
packing.

The derivation is very similar to that of the two-point
correlation function. Only the conditional probabilities p;;
have to be replaced, and the limit of vanishing shell thickness
is carried out. Conditional on the first point lying in sphere
i, we define pff) (r) as the probability that this first point lies
inside the shell Sg ((¢;) and that the second point at a distance
r hits sphere j. The surface-void correlation function is then
given by

FW”‘H@EZ Xkﬂ)

(A9)

N
€ ¢ €
—m P+ D P
i=1 j>i
2s UR
— _1 (€) li (€)
SaR im p” (r )+ ZZ im — Pl/ (r),

llj>l

(A10)

where we use that for a hard-sphere packing the ratio of the
packing fraction ¢ and specific surface area s is equal to the
ratio of the surface area ag := 47 R? and volume vg := Z R?
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of a single sphere. Using this ratio, we define the unit-free
limit:

%m=—mlmm (Al1)
The surface correlation function is then given by
25 o
FQ0) = 5qu()+ 530 ) ai(), (Al2)

i=1 j>i

which is very similar to Eq. (A1) but the volume fraction ¢
is replaced by the specific surface area s, and the conditional
probabilities p;;(r) are replaced by the limit g;; (7).

The calculation of this limit is very similar to the derivation
of p;; using the same auxiliary function f, z(8). The main
difference is that the integral over the sphere i is restricted to
the spherical shell Sk ((c;). In the case of both test points
lying in the same sphere, we derive in accordance with
Refs. [61,63]

r
OQR —r),

qii(r) = (A13)

where ®(2R — r) is again the Heaviside step function. If the
points lie in two different spheres, we derive

1, ()
- — (2R -

Al4
24Rpijr (A14)

Ir — pij*(r — pijl + R),

qij(r) =

where 1 Ipij‘k(r) is again the indicator function of the interval
L, r == [pij — 2R, pij + 2R). Inserting Egs. (A13) and (A14)
in Eq. (A12) yields the final result. In a finite simulation
box with periodic boundary conditions, the same restric-
tion r < h,, — D holds, where h,, is half of the minimum
width.

3. Analytical surface-surface correlation functions
of finite hard-sphere packings

The surface-surface correlation function Fy(r) of a finite
packing of monodisperse hard spheres is derived similarly to
the two-point and void-surface correlation functions.

The definition of the surface-surface correlation function
Fys(r) uses the same limit of vanishing shell thickness € as
in Sec. 2 of this Appendix. It is the limit of the probability
that both random points at distance r lie inside a spherical
shell [39,67]. Therefore, the Monte Carlo estimates are even
more difficult, and our analytical solution for hard spheres
avoids strong statistical errors.

To express the surface-surface correlation function anal-
ogously to Egs. (Al) and (A12), we define the conditional
probability b}j)(r): Based on the condition that x lies inside
sphere i, bfj)(r) is the probability that the point x lies in the
spherical shell Sk ¢(c;) and that simultaneously another point

at distance r from x lies in the spherical shell Sg (c;) (of
sphere j). We also define the limit

v .. 1
aij(r) := ﬁ lim 6—2b§j>(r). (A15)
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Then the surface-surface correlation function can be ex-
pressed as

Fis(r) = lim 6—2 Z Z b (r)

2
StE lim - b“)( )+ 2 ”R Zth bﬁ?(r)

ap €—
R RiD S

Z > a0

1l]>z

= sa;;(r) + (A16)

The calculation is again very similar to those in Secs. 1 and
2 of this Appendix. There, f, z(8) is needed to describe the
probability that a random point at distance r of a given point
x hits a sphere with center ¢; at a distance § := ||x — ¢;].
Here we analogously define gf_e,)e (8) as the probability that the
random point hits the spherical shell Sg ((c;) [and not only
the sphere Br(c;)]. More precisely, it is the fraction of the
surface area of a sphere with radius r centered at x that lies

inside the spherical shell Sk (c;), where § := |[x — ¢;||:
A[0B,.(x)NS i
(e)((s) — [ (x) R,e(c])]. (A17)
4mr?

Only first-order terms do not vanish in the limit. Therefore,
we need to consider only the case |[R — 8| <r < R+ §; i.e.,
the intersection 0 B, (x) N d Bg(cj) contains more than a single
point. All other cases lead to second or smaller terms. For
these values of r, we can choose € small enough so that |R —
€ — 8] <r < R— €+ 4, i.e., that the test sphere d B,(x) also
intersects Bg_c(c;) (the inner sphere of the shell) in more than
a single point. Then Eq. (A17) can easily be calculated using
Eq. (A4):

r,R(S) - Ar,R—e(S)
4mry? ’

Using the indicator function 1;,,(r) with Jg 5 := (|R — 4],
R + 8), we find

(5) ((S)

(A18)

3 R
g 08) = 15,,(N) =€ + O(?). (A19)
2ré
The limits a;; are then calculated analogously to g;;(r) by
integration over the shell Sg ((¢;). In the case that both test
points lie on the same sphere, we derive, in accordance with
Refs. [61,63],
1
a;i(r) = 2—@(2R —7), (A20)
r
where ®(2R — r) is again the Heaviside step function. If the
points lie on two different spheres, we derive

1, .(r)
a;j(r)= ———@2R —

— pijl), A21
iy Ir=pgh.(@A2D)
where 1 %_R(r) is again the indicator function of the interval
Ly k= pij — 2R, p;j + 2R). Inserting Egs. (A20) and (A21)

in Eq. (A16) yields the final result. Again, the radius must
be restricted to r < h,, — D for a finite simulation box with
periodic boundary conditions, where /,, is half of the minimum
width.
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APPENDIX B: TWO-BODY CONTRIBUTIONS

The correlation functions are sums of contributions from
either a single sphere [see Eqs. (A13) and (A20)] or from two
spheres [see Eqs. (A14) and (A21)]. The contributions from
a single sphere are, by definition, the same for all possible
arrangements of hard spheres. To learn more about a specific
system and to compare different packings, it is helpful to
calculate the contributions from two spheres separately from
those of a single sphere.

For finite packings of hard spheres, we define the two-body
contributions to the correlation functions Fj, and Fj; by

e N
Fi(r):= Ns Z Z%‘_,‘(”), (B1)
i=1 j>i
25
Fin =25 SN ay. (B2)
i=1 j>i

where ¢;;(r) and a;;(r) are given in Egs. (A14) and (A21),
respectively. The two-body contributions have also already
been defined in the thermodynamic limit (i.e., infinite system
size), where they can be connected to the pair-correlation
function g,(r), as discussed for the correlation functions in
Sec. III B [39,61].

Figures 12 and 13 compare the two-body contributions
F},(r) and F},(r) for the MRJ sphere packings to those of the
equilibrium hard spheres and the overlapping spheres. Because
the single-body contributions are nonzero only for r < D, the
curves in Fig. 13 deviate from the curves in Fig. 5 only for
r < D. For the same reason, Fj,(r) in Fig. 4 is for r > D
identical to s — F} (r); see Fig. 12.

Because the overlapplng spheres are completely indepen-
dent from each other, their two-body contributions are trivial,
thatis, constant and equal to the long-range limit; see Sec. I1I B.
The results for the equilibrium hard spheres are in good
agreement with the previous findings in Ref. [61] at similar
global packing fractions. There, an approximation of the
pair-correlation function by Verlet and Weis [62] was used to
calculate the correlation functions. The curves are continuous
and differentiable.

Comparing the MRJ sphere packings to the equilibrium
hard-sphere liquid, we find some distinct signatures produced
by the contacts between the spheres.

At least for finite packings of hard spheres, the slope of
F} (r) forr — 0 can berelated to the mean number of contacts
Z using the explicit expression from Eq. (A14) [because only
spheres at contact contribute in a finite packing to F (r) for
r — 0]:

dFS*U

0) = 3D° (B3)
The mean contact number Z vanishes for the equilibrium hard
spheres but not for the MRJ packings. The latter packings
are isostatic, which means that the number of constraints by
spheres in contact matches exactly the number of degrees
of freedom. For an infinite system, this results in a mean
contact number 7 = 6. For a finite deformable simulation
box, additional constraints have to be taken into account,
but carefully identifying the contacts between spheres still
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FIG. 12. Two-body contributions F}; (r) to the surface-void cor-
relation functions (rescaled by the specific surface s) for overlapping
spheres (for which it is constant and equal to ¢ = 0.636; the specific
surface area is s = 2.21/D), an equilibrium hard-sphere liquid
(¢ =0.478, s =2.87/D), and MRIJ sphere packings (¢ = 0.636,
s = 3.81/D). For the MRJ packings, the dashed (green) line indicates
the slope at r = 0, which is strictly positive for the jammed sphere
packings in contrast to the other two systems. The slope can be related
to the mean number of contacts Z; see Eq. (B3).

yields z & 6.00. For more details, see Ref. [24], whose MRJ
configurations we here analyze. Because 7 > 0 for the MRJ
sphere packings, the slope of F} (r) does not vanish at r =0
in contrast to the equilibrium hard spheres.

Even more prominent are the differences between F};(r)
for the MRJ and equilibrium hard-sphere packings. There, the
functional value F}(0) := lim,_,¢ F};(r) can be related to the

S
same mean contact number Z:

S

FL0)= 52

(B4)
Equations (B3) and (B4) provide estimates of the mean number
of contacts based on the correlation functions. In principle, the
exact formulas for the correlation functions of hard-sphere
packings, which are derived here, allow for accurate results.
However, if there are numerical inaccuracies, e.g., in the posi-
tions of the spheres or their radii, or if the functions are evalu-
ated only at finite radial distances, slight deviations can appear.

While for the equilibrium hard spheres F (0) = 0, the func-
tional values remain strictly positive for the MRJ packings.
Moreover, in contrast to the smooth curves for the equilibrium
hard spheres, F};(r) of the MRJ packings is continuous but
not differentiable at r = D and r = 2D. These discontinuities
in the derivative arise because of the contacts between the
spheres. A rigorous connection to the mean number of
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FIG. 13. Two-body contributions F};(r) to the surface-surface
correlation functions (rescaled by the square of the specific surface
s) for overlapping spheres (for which it is constant unity; ¢ = 0.636,
s = 2.21/D), an equilibrium hard-sphere liquid (¢ = 0.478, s =
2.87/D), and MRIJ sphere packings (¢ = 0.636, s = 3.81/D). For
the MRJ packings, the dashed (green) line shows the functional value
at r = 0, which is strictly positive for the jammed sphere packings
in contrast to the equilibrium hard spheres. The value can be related
to the mean number of contacts Z; see Eq. (B4). Moreover, for the
MRIJ packings, the value F(D)/s* = 0.9924(1) is close to unity (in
contrast to the equilibrium hard-sphere liquid). The insets magnify
Fi(r)/s* atr = D, where the derivative of F is discontinuous for
the MRJ sphere packings in contrast to the equilibrium hard spheres;
see also the insets of Fig. 5 for the same finding at » = 2D. Note that
Fi(r) = Fy(r) forr > D.

contacts can be derived by expressing the surface-surface
correlation function by the pair-correlation function of the
sphere centers [61].

The radial Dirac delta function contribution from the
spheres at contact to the total correlation function A(r) =
g(r)—1is
z6(r — D)

h(C) —
2 (") p4m D?

(BS)

Evaluating the Fourier transforms in Ref. [61], we obtain their
contribution to the surface-surface correlation function:

oDx I, r <D,
FO0) =215, D<r<2D,  (B6)
0, 2D <.

It is continuous but not differentiable at » = D and r = 2D.
Note that the contribution from spheres that are not at contact
is smooth. Therefore, the discontinuities in the derivative of
F}, stem only from spheres that are at contact with each other.
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Similarly to Fj, we can also compute the contributions F, S(lf) and S,

correlation function:
3Dr—2r

PHYSICAL REVIEW E 94, 022152 (2016)

) of the spheres in contact to the surface-void and two-point

(c) _pT 3 6 2 2 3 r<b,
FO@r) = ZT 2r3-9Dr -giZD r—4D D <r <2D, (B7)
, 2D <,
r*(r> = 5Dr + 5D?), r <D,
§Oy = 7 P 4 3 2.2 3 4 8p5
) :112OD —r*+5Dr°> —5D“r — 10D°r + 20D - D, D <r <2D, (BS)
0, 2D <r.

(c)

They are continuous and differentiable. For F(© at r = D and S5” at r = D and r = 2D, even the second derivatives exist.

(c)

However, the second derivative of F(© is discontinuous at » = 2D and so are the third derivatives of F at r = D and S,” at

r=Dandr =2D.
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