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1.  Introduction

The unusual suppression of density fluctuations at large length 
scales is central to the hyperuniformity concept, whose broad 
importance for condensed matter physics and materials science 

was brought to the fore only about a decade ago in a study that 
focused on fundamental theoretical aspects, including how it 
provides a unified means to classify and categorize crystals, 
quasicrystals and special disordered point configurations [1]. 
Moreover, it was shown that the hyperuniform many-particle 
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Abstract
Disordered hyperuniform many-body systems are distinguishable states of matter that lie 
between a crystal and liquid: they are like perfect crystals in the way they suppress large-
scale density fluctuations and yet are like liquids or glasses in that they are statistically 
isotropic with no Bragg peaks. These systems play a vital role in a number of fundamental and 
applied problems: glass formation, jamming, rigidity, photonic and electronic band structure, 
localization of waves and excitations, self-organization, fluid dynamics, quantum systems, 
and pure mathematics. Much of what we know theoretically about disordered hyperuniform 
states of matter involves many-particle systems. In this paper, we derive new rigorous criteria 
that disordered hyperuniform two-phase heterogeneous materials must obey and explore their 
consequences. Two-phase heterogeneous media are ubiquitous; examples include composites 
and porous media, biological media, foams, polymer blends, granular media, cellular solids, 
and colloids. We begin by obtaining some results that apply to hyperuniform two-phase media 
in which one phase is a sphere packing in d-dimensional Euclidean space Rd. Among other 
results, we rigorously establish the requirements for packings of spheres of different sizes to 
be ‘multihyperuniform’. We then consider hyperuniformity for general two-phase media in 
Rd. Here we apply realizability conditions for an autocovariance function and its associated 
spectral density of a two-phase medium, and then incorporate hyperuniformity as a constraint 
in order to derive new conditions. We show that some functional forms can immediately be 
eliminated from consideration and identify other forms that are allowable. Specific examples 
and counterexamples are described. Contact is made with well-known microstructural models 
(e.g. overlapping spheres and checkerboards) as well as irregular phase-separation and Turing-
type patterns. We also ascertain a family of autocovariance functions (or spectral densities) 
that are realizable by disordered hyperuniform two-phase media in any space dimension, 
and present select explicit constructions of realizations. These studies provide insight into 
the nature of disordered hyperuniformity in the context of heterogeneous materials and have 
implications for the design of such novel amorphous materials.
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systems are poised at a unique type of critical point in which 
(normalized) large-scale density fluctuations vanish such that 
the direct correlation function of the Ornstein–Zernike rela-
tion is long-ranged [1]. This is to be contrasted with a standard 
thermal critical point in which large-scale density fluctuations 
are infinitely large and the total correlation function (not the 
direct correlation function) is long-ranged [2–5].

Roughly speaking, a hyperuniform (or superhomoege-
neous [6]) many-particle system in d-dimensional Euclidean 
space Rd is one in which (normalized) density fluctuations are 
completely suppressed at very large length scales, implying 
that the structure factor ( )S k  tends to zero as the wavenumber 
≡ | |k k  tends to zero, i.e.

( )
→

=
| |

S klim 0.
k 0� (1)

Equivalently, it is one in which the number variance of particles 
within a spherical observation window of radius R, denoted by 

( )σ RN
2 , grows more slowly than the window volume (Rd) in the 

large-R limit. Typical disordered systems, such as liquids and 
structural glasses, have the standard volume scaling, that is, 

( )σ ∼R RN
d2 . By contrast, all perfect crystals and quasicrystals 

are hyperuniform with the surface-area scaling ( )σ ∼ −R RN
d2 1. 

Surprisingly, there are a special class of disordered particle 
configurations, such as the one shown in the right panel of 
figure 1, that have the same asymptotic behavior as crystals. 
There are scalings for the number variance other than surface-
area growth. When the structure factor goes to zero in the limit 

→| |k 0 with the power-law form

( )∼ | |αS k k ,� (2)

where α> 0, the number variance has the following large-R 
asymptotic scaling [1, 7, 8]:

( ) ( → )

⎧
⎨
⎪

⎩⎪
σ

α
α
α

∼
>
= ∞
< <α

−
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−
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R
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N

d

d

d

2

1

1� (3)

Disordered hyperuniform systems can be regarded to be 
exotic states of matter that lie between a crystal and liquid: they 
are like perfect crystals in the way they suppress large-scale 

density fluctuations and yet are like liquids or glasses in that 
they are statistically isotropic with no Bragg peaks. In this 
sense, they can have a hidden order (see figure 1 for a vivid 
example) and appear to be endowed with novel physical prop-
erties, as described below.

We knew of only a few examples of disordered hype-
runiform systems about a decade ago [1, 6, 10, 11]. The 
importance of the hyperuniformity concept in the context of 
condensed matter started to become apparent when it was 
shown that classical many-particle systems with certain long-
ranged pair potentials could counterintuitively freeze into 
disordered hyperuniform states at absolute zero with singular 
scattering patterns, such as the one shown in the right panel 
of figure 2 [12, 13]. This exotic situation runs counter to our 
everyday experience where we expect liquids to freeze into 
crystal structures (like ice). Mapping such configurations of 
particles to network structures, what was previously thought 
to be impossible became possible, namely, the first disordered 
dielectric networks to have large isotropic photonic band gaps 
comparable in size to photonic crystals [14]. We now know 
that these exotic states of matter can exist as both equilibrium 
and nonequilibrium phases across space dimensions, including 
maximally random jammed particle packings [15–17], jammed 
athermal granular media [18], jammed thermal colloidal 
packings [19, 20], dynamical processes in ultracold atoms 
[21], driven nonequilibrium systems [22–27], avian photore-
ceptor patterns [28], geometry of neuronal tracts [29], certain 
quantum ground states (both fermionic and bosonic) [30, 31], 
classical disordered (noncrystalline) ground states [9, 12, 13, 
32, 33]. A variety of groups have recently fabricated disordered 
hyperuniform materials at the micro- and nano-scales for var-
ious photonic applications [34–36], surface-enhanced Raman 
spectroscopy [37], the realization of a terahertz quantum cas-
cade laser [38] and self-assembly of diblock copolymers [39]. 
Moreover, a computational study revealed that the electronic 
bandgap of amorphous silicon widens as it tends toward a 
hyperuniform state [40]. Recent x-ray scattering measure-
ments indicate that amorphous-silicon samples can be made 
to be nearly hyperuniform [41]. Finally, we note that the hype-
runiformity concept has suggested new correlation functions 
from which one can extract relevant growing length scales as 

Figure 1.  A disordered non-hyperuniform many-particle configuration (left) and a disordered hyperuniform many-particle configuration 
(right) [9]. The latter is arrived at by very tiny collective displacements of the particles on the left. These two examples show that it can be 
very difficult to detect hyperuniformity by eye, and yet their large-scale structural properties are dramatically different.
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a function of temperature as a liquid is supercooled below its 
glass transition temperature [42], a problem of intense interest 
in the glass physics community [43–48].

The hyperuniformity concept was generalized to the case of 
two-phase heterogeneous materials [7], which are ubiquitous; 
examples include composites and porous media, biological 
media, foams, polymer blends, granular media, cellular solids 
and colloids [49, 50]. Here the phase volume fraction fluctu-
ates within a finite-sized spherical window of radius R (see 
figure 3) and hence can be characterized by the volume-fraction 
variance ( )σ RV

2 . For typical disordered two-phase media, the 

variance ( )σ RV
2  for large R goes to zero like R−d. However, for 

hyperuniform disordered two-phase media, ( )σ RV
2  goes to zero 

asymptotically more rapidly than the inverse of the window 
volume, i.e. faster than R−d, which is equivalent to the fol-
lowing condition on the spectral density (defined in section 2):

˜ ( )
→
χ =

| |
klim 0.V

k 0� (4)

As in the case of hyperuniform point configurations [1, 7, 8], 
three different scaling regimes when the spectral density goes 
to zero with the power-law form ˜ ( )χ ∼ | |αk kV :

( ) ( → )
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( )
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where the exponent α is a positive constant.
Much of our recent theoretical understanding of hyperuni-

form states of matter is based on many-particle systems. The 
purpose of this paper is to delve more deeply into theoretical 
foundations of disordered hyperuniform two-phase media by 
establishing new rigorous criteria that such systems must obey 
and exploring their consequences.

In section  2, we provide necessary mathematical defini-
tions and background. In section  3, we derive some results 
concerning hyperuniformity of two-phase systems in Rd in 
which one phase is a sphere packing and the spheres generally 
have different sizes. We determine the necessary and sufficient 

conditions for a sphere packing to be stealthy and hyperuni-
form, and prove that when each subpacking associated with 
each component is hyperuniform, the entire packing is hype-
runiform: a property called ‘multihyperuniformity’ [28]. In 
section 4, we consider hyperuniformity for general two-phase 
media that lie outside the special class that are derived from 
sphere packings in d-dimensional Euclidean space Rd. Here 
we apply realizability conditions for an autocovariance func-
tion and its associated spectral density of a two-phase medium, 
and then incorporate hyperuniformity as a constraint in order 
to derive new conditions. We demonstrate that some functional 
forms can immediately be eliminated from consideration, but 
also identify other forms that are allowable. Specific examples 
and counterexamples are described, including remarks about 
well-known microstructural models (e.g. overlapping spheres 

Figure 2.  Left: scattering pattern for a crystal. Right: scattering pattern for a disordered ‘stealthy’ hyperuniform material (defined in 
section 2.1). Notice that apart from forward scattering, there is a circle around the origin in which there is no scattering, a highly exotic 
situation for an amorphous state of matter.

Figure 3.  A schematic indicating a circular observation window of 
radius R that is centered at position x0 in a disordered two-phase 
medium; one phase is depicted as a green region and the other 
phase as a white region. The phase volume fractions within the 
window will fluctuate as the window position x0 is varied.

J. Phys.: Condens. Matter 28 (2016) 414012
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and checkerboards) as well as irregular phase-separation and 
Turing-type patterns. We also ascertain a family of autocovari-
ance functions that are realizable by disordered hyperuniform 
two-phase media in arbitrary space dimensions, In section 5, 
we close with some concluding remarks.

2.  Background

2.1.  Point configurations

Consider statistically homogeneous point configurations in 
d-dimensional Euclidean space Rd. The standard pair correla-
tion function ( )g r2  is proportional to the probability density 
associated with finding pairs of points separated by the dis-
placement vector r, and is normalized in such a way that it 
tends to unity in the limit →| | ∞r  in the absence of long-range 
order. The total correlation function ( )h r  is defined as

( ) ( )= −h gr r 1.2� (6)

The nonnegative structure factor ( )S k , which is proportional to 
the scattering intensity, is trivially related to the Fourier trans-
form of ( )h r :

( ) ˜( )ρ= +S hk k1 .� (7)

Appendix A provides definitions of the d-dimensional Fourier 
transforms that we use in this paper.

The local number variance ( )σ RN
2  is determined entirely by 

pair correlations [1]:

( ) ( ) ( ) ( )

( )
( )

( ) ˜( )

R

R

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫

∫

σ ρ ρ α

ρ
π

α

= +

=

R v R h r R

v R S k R

r r

k k

1 ; d

1

2
; d ,

N

d

2
1

1

d

d

�
(8)

where ( ) / ( / )/π= Γ +v R R d1 2d d
1

2  is the d-dimensional 
volume of a spherical window, ( )α r R;  is the intersection 
volume of two identical hyperspheres of radius R (scaled by 
the volume of a sphere) whose centers are separated by a dis-
tance r, which is known analytically in any space dimension 
[1, 51], and ˜( )α k R;  is its Fourier transform, which is nonnega-
tive and explicitly given by

˜( ) ( / ) [ ( )]/ /α π= Γ +k R d
J kR

k
; 2 1 2 .d d d

d
2 2

2

� (9)

Here ( )νJ x  is the Bessel function of order ν.
As mentioned earlier, the hyperuniformity property for 

point configurations is specified by the structure-factor con-
dition (1). Stealthy configurations are those in which the 
structure factor is exactly zero for a subset of wave vectors, 
meaning that they completely suppress single scattering of 
incident radiation for these wave vectors [13]. Stealthy hype-
runiform patterns [9, 12, 13] are a subclass of hyperuniform 
systems in which the structure factor is zero for a range of 
wave vectors around the origin, i.e.

( ) ⩽ ⩽= | |S Kk k0 for 0 ,� (10)

where K is some positive number. An example of a stealthy dis
ordered scattering pattern is shown in the right panel of figure 2.

2.2. Two-phase media

A two-phase random medium is a domain of space R⊆V d 
of volume V that is partitioned into two disjoint regions that 
make up V: a phase 1 region V1 of volume fraction φ1 and a 
phase 2 region V2 of volume fraction φ2 [49].

2.2.1. Two-point statistics.  The phase indicator function 
( )( )I xi  for a given realization is defined as

( )( )
⎧
⎨
⎩

=
∈
∉

I
V
V

x
x
x

1, ,
0, ,

i i

i
� (11)

The one-point correlation function ( ) ⟨ ( )⟩( ) ( )= IS x xi i
1  (where 

angular brackets indicate an ensemble average) is generally 
dependent on the position x, but is a constant for statistically 
homogeneous media, namely, the phase volume fraction, i.e.

⟨ ( )⟩( )φ = I x ,i
i� (12)

such that φ φ+ = 11 2 . The two-point correlation function is 

defined as ( ) ( ) ( )( ) ( ) ( )= I IS x x x x,i i i
2 1 2 1 2 . This function is the 

probability of finding two points at positions x1 and x2 in phase i. 
For statistically homogeneous media, the two-point correla-
tion function will only depend on the relative displacement 
vector ≡ −r x x2 1 and hence ( ) ( )( ) ( )=S Sx x r,i i

2 1 2 2 . The autoco-
variance function ( )χ rV  associated with the random variable 

( )( )I xi  for phase 1 is equal to that for phase 2, i.e.

( ) ( ) ( )( ) ( )χ φ φ≡ − = −S Sr r r .V 2
1

1
2

2
2

2
2� (13)

At the extreme limits of its argument, χV has the following 
asymptotic behavior

( ) ( )
→

χ φ φ χ= = =
| | ∞

r r0 , lim 0,V V
r

1 2� (14)

the latter limit applying when the medium possesses no long-
range order. If the medium is statistically homogeneous and 
isotropic, then the autocovariance function ( )χ rV  depends 
only on the magnitude of its argument =| |r r , and hence is 
a radial function. In such instances, its slope at the origin is 
directly related to the specific surface s (interface area per unit 
volume); specifically, we have in any space dimension d, the 
asymptotic form [49],

d sr r r ,V 1 2
2χ φ φ β= − | | + | |O( ) ( ) ( )� (15)

where

( ) ( / )
(( )/ )

β
π

=
Γ
Γ +

d
d

d

2

2 1 2
.� (16)

The nonnegative spectral density ˜ ( )χ kV , which can be 
obtained from scattering experiments [52, 53], is the Fourier 
transform of ( )χ rV , i.e.

˜ ( ) ( ) ⩾
R∫χ χ= − ⋅k r r ke d 0, for all .V V

k ri
d

� (17)

For isotropic media, the spectral density only depends on 
=| |k k  and, as a consequence of (15), its decay in the large-k 

limit is controlled by the exact following power-law form:
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˜ ( ) ( ) →χ
γ

∼ ∞
+

d s

k
kk , ,V d 1� (18)

where

( ) (( )/ )( )/γ π= Γ +−d d2 1 2d d 1 2� (19)

is a d-dimensional constant.
The higher-order correlation functions …S S, ,3 4  [49, 54, 55] 

will not be considered here, but we note that they arise in rig-
orous bounds and exact expressions for effective transport 
[49, 56–63], elastic [49, 58, 60, 61, 64] and electromagnetic 
[65] properties of two-phase media.

2.2.2.  Realizability conditions on autocovariance functions of 
two-phase media.  A necessary and sufficient condition for 
the existence of a scalar autocovariance function of a stochas-
tically continuous homogeneous process is that its spectral 
function must be a nonnegative bounded measure [49, 66]. 
However, it is known that for a two-phase system character-
ized by the phase indicator function (11), the nonnegativity 
property of the spectral function (see (17)) is a necessary 
but generally not sufficient condition for the existence of an 
autocovariance function ( )χ rV  corresponding to a two-phase 
medium [49, 51, 67–70]. The autocovariance function must 
also satisfy other conditions, which are most conveniently 
stated in terms of the scaled autocovariance function ( )f r , 
which is defined by

( )
( )χ
φ φ

≡f r
r

.V

1 2
� (20)

Comparing this to relation (14), we see that

( ) ( )
→

= = =
| | ∞

f fr r0 1, lim 0.
r� (21)

We let ˜ ( )f k  denote the Fourier transform of ( )f r , implying 
that

˜ ( )
˜ ( )

⩾
χ
φ φ

=f k
k

k0 for all .V

1 2
� (22)

Among other conditions, the scaled autocovariance func-
tion must satisfy the following bounds for all r:

⩽ ( ) ⩽
⎡
⎣
⎢

⎤
⎦
⎥

φ
φ
φ
φ

− f rmin , 1.1

2

2

1
� (23)

Another necessary condition on ( )f r  in the case of statistically 
homogeneous and isotropic media, i.e. when ( )f r  is depen-
dent only on the distance ≡ | |r r , is that its derivative at r  =  0 
is strictly negative for all φ< <0 1i :

<
=

f

r

d

d
0,

r 0
� (24)

which is consistent with the fact that slope at r  =  0 is propor-
tional to the negative of the specific surface s (see (15)). Since 

( )| |f r  is an even function (i.e. ( ) ( )= −f fr r ) that is linear in 
| |r  at the origin, it is nonanalytic at the origin. This is rather 
a strong restriction because it eliminates any function that is 
analytic at the origin (which necessarily implies even powers 

of | |r ); for example, it prohibits autocovariance functions of 
a Gaussian form (e.g. ( ( / ) )− r aexp 2 ). For statistically homo-
geneous media, another condition is the so-called ‘triangular 
inequality’:

( ) ⩾ ( ) ( )+ −f f fr s t 1,� (25)

where = −r t s. If the autocovariance function of a statis-
tically homogeneous and isotropic medium is monotoni-
cally decreasing, nonnegative and convex at the origin (i.e. 

/ ⩾f rd d 02 2 ), then it satisfies the triangular inequality (25). The 
triangular inequality implies several pointwise conditions on 

( )f r . For example, for statistically homogeneous and isotropic 
media, it implies the condition (24) and convexity at the origin:

⩾
=

f

r

d

d
0.

r

2

2
0

� (26)

The triangular inequality is actually a special case of the 
following more general condition:

f r r 1,
i

m

j

m

i j i j
1 1
∑∑ ε ε −
= =

( ) ⩾� (27)

where ε =± 1i  (i  =  1, ..., m and m is odd). Note that by 
choosing m  =  3; ε ε = 11 2 , ε ε ε ε= = −11 3 2 3 , equation (25) can 
be rediscovered. If m  =  3; ε ε ε ε ε ε= = = 11 2 1 3 2 3  are chosen 
instead, another ‘triangular inequality’ can be obtained, i.e.

( ) ⩾ ( ) ( )− − −f f fr s t 1,� (28)

where = −r t s. Equation (28) was first derived by Quintanilla 
[69]. Equation  (27) is a much stronger necessary condition 
that implies that there are other necessary conditions beyond 
those identified thus far. However, equation (27) is difficult to 
check in practice, because it does not have a simple spectral 
analog.

2.2.3.  Local volume-fraction variance and spectral density.  It 
is known that the volume-fraction variance ( )σ RV

2  within a 
d-dimensional spherical window of radius R can be expressed 
in terms of the autocovariance function ( )χ rV  [71]:

( )
( )

( ) ( )
R∫σ χ α=R

v R
r Rr r

1
; d ,V V

2

1
d

� (29)

where

( )
( / )

/π
=
Γ +

v R
R

d1 2

d d

1

2

� (30)

is the volume of a d-dimensional sphere of radius R, and ( )α r R;  
is the scaled intersection volume, as defined in equation (8)1. 
The alternative Fourier representation of the volume-fraction 
variance that is dual to the direct-space representation (29) 
is trivially obtained by applying Parseval’s theorem to (29) 
under the assumption that the spectral density ˜ ( )χ kV  (Fourier 
transform of ( )χ rV ) exists:

1 Note that we have changed the earlier notation for the volume-fraction 
variance used in [7] from ( )στ R2  to ( )σ RV

2  to distinguish it from other variance 
functions that have been introduced elsewhere [72] to describe generaliza-
tions of the hyperuniformity concept.
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( )
( )( )

˜ ( ) ˜( )
R∫σ

π
χ α=R

v R
k Rk k

1

2
; d .V d V

2

1
d

� (31)

Note that the hyperuniformity condition (4) dictates that the 
direct-space autocovariance function ( )χ rV  exhibits both posi-
tive and negative correlations such that its volume integral 
over all space is exactly zero, i.e.

( )
R∫ χ =r rd 0,Vd

� (32)

which can be thought of as a sum rule. The generalization 
of the hyperuniformity concept to two-phase systems has 
been fruitfully applied to characterize a variety of disordered 
sphere packings [15, 20, 73–75].

3.  Hyperuniform sphere packings

Here we collect in one place various known results scattered 
throughout the literature concerning the autocovariance func-
tion ( )χ rV  and spectral density ˜ ( )χ kV  for two-phase media in 
Rd in which one phase is a sphere packing in order to make 
some remarks about hyperuniformity and stealthiness. A par-
ticle packing is a configuration of nonoverlapping (i.e. hard) 
particles in Rd. For statistically homogeneous packings of 
congruent spheres of radius a in Rd at number density ρ, the 
two-point probability function ( )S r2  of the particle (sphere) 
phase is known exactly in terms of the pair correlation func-
tion [49, 76], yielding the autocovariance function as

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

χ ρ ρ

ρ ρ

= ⊗ + ⊗ ⊗

= + ⊗

m r a m r a m r a m r a h

v r a v r a h

r r

r

; ; ; ;

; ; ,
V

2

2
int 2

2
int

�
(33)

where

( ) ( ) ⩽⎧
⎨
⎩= Θ − =

>
m r a a r

r a
r a

;
1, ,
0, ,� (34)

is the sphere indicator function, and ( ) ( ) ( )α=v r a v a r a; ;2
int

1  is 
the intersection volume of two spherical windows of radius a 
whose centers are separated by a distance r, where v1(a) and 

( )α r a;  are defined as in (29), and ⊗ denotes the convolution of 
two functions ( )F r  and ( )G r :

( ) ( ) ( ) ( )
R∫⊗ = −F G F Gr r x r x xd .

d
� (35)

Fourier transformation of (33) gives the corresponding spec-
tral density in terms of the structure factor [7, 49, 76]:

˜ ( ) ˜ ( ) ˜ ( ) ˜( )
˜ ( ) ( )
˜( ) ( )

χ ρ ρ

ρ
φα

= +

=
=

m k a m k a h

m k a S
k a S

k k

k
k

; ;

;
;

V
2 2 2

2�
(36)

where

˜( )
( )

˜ ( )
( )

( )/⎜ ⎟
⎛
⎝

⎞
⎠α

π
= =k a

v a
m k a

v a

a

k
J ka;

1
;

1 2
,

d

d
1

2

1
2

2� (37)

( )φ ρ= v a ,1� (38)

is the packing fraction, defined to be the fraction of space cov-
ered by the nonoverlapping spheres, and v1(a) is the volume of 
a sphere of radius a defined by (30).

We can bound the volume-fraction variance ( )σ RV
2  from 

above in terms of the number variance ( )σ RN
2  for some fixed 

R. This is accomplished by substituting the second line of 
(36) into the integral expression (31), employing the number- 
variance relation (8) and using the fact that ˜ ( )m k a;  achieves its 
maximum value of v1(a) at k  =  0. This leads to the following 
upper bound:

( ) ⩽ ( )⎜ ⎟
⎛
⎝

⎞
⎠σ σR

a

R
R Rfor all ,V

d

N
2

2
2� (39)

In [7], the same bound was given, but was derived for the 
large-R asymptotic limit. Bound (39) is in fact valid for any R.

We now show that the hyperuniformity of a sphere packing 
in terms of volume-fraction fluctuations can only arise if the 
underlying point configuration (determined by the sphere 
centers) is itself hyperuniform. Since ˜( )α k a;  is analytic at 
k  =  0, we have that in the limit →k 0,

α
π

=
Γ +

−
+
+O˜( )

( )
( ) ( )

⎡
⎣⎢

⎤
⎦⎥

k a
R

d

ka

d
k;

1 /2
1

2
,

d d/2 2
4� (40)

Because ˜( )α k a;  is a positive well-behaved function in the 
vicinity of the origin, it immediately follows from expression 
(36) that if the underlying point process is hyperuniform, as 
per the structure-factor condition (1), then the spectral density 
˜ ( )χ kV  inherits the hyperuniformity property (4) only through 
the structure factor, not ˜( )α k a; . The stealthiness property (no 
scattering at some finite subset of wave vectors) is a bit more 
subtle. We see from relation (36) that ˜ ( )χ kV  is zero at those 
wave vectors where ( )S k  is zero as well as at the zeros of 
the function ˜( )α k a; , which is determined by the zeros of the 
Bessel function Jd/2(ka).

To illustrate the utility of these results, we now con-
sider an example where the spectral density as well as the 
volume-fraction variance can be calculated exactly for a 
sphere-packing model as density increases up to a maximal 
value corresponding to hyperuniform state. Specifically, 
we compute these quantities for sphere packings corre
sponding to a g2-invariant process introduced by Torquato 
and Stillinger [1]. A g2-invariant process is one in which 
a chosen nonnegative form for the pair correlation func-
tion g2 remains invariant over a nonvanishing density 
range while keeping all other relevant macroscopic vari-
ables fixed [77]. The upper limiting ‘terminal’ density is 
the point above which the nonnegativity condition on the 
structure factor (see (7)) would be violated. Thus, when-
ever the structure factor attains its minimum value of zero at 
=k 0 at the terminal or critical density, the system, if real-

izable, is hyperuniform. In [1], a variety of hyperuniform 
g2-invariant processes in which the number variance ( )σ RN

2  
grows like the window surface area (i.e. Rd−1) were exactly 
studied in arbitrary space dimensions. For our purposes, we 
employ the ‘step-function’ g2-invariant process, namely,  
a g2(r) that is defined by the unit step function ( )Θ −r D , where 
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D  =  2a is the sphere diameter. The corresponding structure 
factor in the density range ⩽ ⩽ρ ρ0 c is given by

⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟S k d

kD
J kD1 1 2

2
,

d

c
d

2

2
ρ
ρ

= − Γ +( ) ( / ) ( )
/

/� (41)

where [ ( / )]ρ = −v D2 2c
d

1
1 is the terminal density at which the 

packing is hyperuniform [1]. For ρ ρ< c, the packing is not 
hyperuniform. Substitution of (41) into relation (36) yields the 
associated spectral density for this model in d dimensions:

χ ρ
π ρ

ρ
= − Γ +˜ ( ) ( / ) ( / ) ( )/

/

/⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎡

⎣
⎢
⎢

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

D

k
J kD d

kD
J kDk 2 1 1 2

2
.V

d

d

d

c
d2

2
2

2

�

(42)

The top panel of figure  4 shows the spectral function 
˜ ( )χ kV  for the aforementioned g2-invariant packing process 
in three dimensions at two different densities: one at a non-
hyperuniform density /ρ ρ= 2c  and the other at the hyperuni-
form terminal density ρc, where /( )ρ ρ π= = 3 4c , as obtained 
from (42). As noted above, the degree of hyperuniformity 
reflected in ˜ ( )χ kV  is inherited from the properties of the struc-
ture factor. Note that value of the spectral density at the origin 
for /ρ ρ= 2c  would monotonically decrease as the density 
increases up to the terminal density at which point it is exactly 
zero. The bottom panel of this figures depicts the associated 
local volume-fraction variance ( )σ RV

2  multiplied by R3 for 
these two packings, as obtained from relation (31). Observe 
that because ( )σ RV

2  for the non-hyperuniform curve decays 
like R−3 for large R, the product ( )σ R RV

2 3 asymptotes to a con-
stant value. By contrast, the product ( )σ R RV

2 3 for ρ ρ= c decays 
like R−1 for large R, as it should for this three-dimensional 
hyperuniform two-phase system.

The aforementioned results for the pair statistics in both 
direct and Fourier spaces for identical spheres have been gen-
eralized to the case of impenetrable spheres with a continuous 
or discrete size distribution at overall number density ρ [49, 78]. 
We collect these results in appendix B in order and prove there 
that when each subpacking associated with each component is 
hyperuniform, the entire packing is hyperuniform, what has 
been termed multihyperuniformity [28]. It is important to note 
that examining the structure factor ( )S k  of the point configura-
tions derived from the centers of spheres with a polydispersity 
in size could lead one to incorrectly conclude that the pack-
ings were not hyperuniform. It has been demonstrated [15, 73, 74]  
that the proper means of investigating hyperuniformity in this 
case is through a packing’s spectral density ˜ ( )χ kV . This has 
also been confirmed in experimental studies of maximally 
random jammed packings of colloidal spherical particles with 
a size distribution [20].

4.  Hyperuniformity conditions for a general class of 
two-phase media

Our interest here is to elucidate our understanding of hype-
runiformity in general two-phase media that lie outside the 
special class that are derived from sphere packings, as per the 
previous section. This is accomplished by applying the real-
izability conditions for an autocovariance function of a two-
phase medium that is also hyperuniform. We show that some 
functional forms can immediately be eliminated from consid-
eration and that other forms are allowable. Specific examples 
and counterexamples are described. We note that it trivially 
follows from (32) that the scaled autocovariance ( )f r  obeys 
the sum rule

∫ =
R

( )f r rd 0.
d

� (43)

When ( )f r  is a function of the modulus =| |r r , this sum rule 
reduces to the following one-dimensional integral condition:

Figure 4.  Top panel: a hyperuniform spectral density kṼ( )χ  versus 
wavenumber k for sphere packings corresponding to the step-
function g2-invariant process in three dimensions at two different 
densities: one at a non-hyperuniform density 2c/ρ ρ=  and the other 
at the hyperuniform terminal density cρ , where 3 4c /( )ρ ρ π= =  
[1]. Bottom panel: the corresponding volume-fraction variance 

RV
2σ ( ) versus window sphere radius R for the non-hyperuniform 

and hyperuniform cases. The diameter of a hard sphere is the 
unit distance that makes all relevant dimensional variables 
dimensionless.
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( )∫ =
∞

−r f r rd 0.d

0

1� (44)

4.1.  Monotonic autocovariance functions

To begin, it is instructive to illustrate the capacity of the sum 
rule (43) to eliminate an enormous set of two-phase struc-
tures from the hyperuniform class. First, we make the simple 
observation that any two-phase medium with a scaled auto-
covariance function ( )f r  that monotonically decreases from 
its maximum value of unity at the origin to its long-range 
value, such as the well-known overlapping-sphere and sym-
metric-cell models [49, 79], cannot be hyperuniform at any 
positive volume fraction, since the sum rule (43) requires that 
the autocovariance function ( )χ rV  possess both positive and 
negative values such that its volume integral over all space 
be zero. The overlapping-sphere model in Rd consists of the 
union of spheres that circumscribe the points generated from 
a Poisson distribution. The symmetric-cell model is derived 
from a tessellation of space into ‘cells’ with cells being ran-
domly designated as phase 1 and phase 2 with probability φ1 
and φ2, respectively. Figure 5 shows two-dimensional realiza-
tions of each of these models. We note that while these are 
idealized models, there are many real two-phase systems (e.g. 
sandstones and ceramic-metal composites) that have similar 
monotonic autocovariance functions [49, 80] and hence can be 
immediately ruled out as hyperuniform structures. Moreover, 
it is noteworthy that there is a huge class of two-phase sys-
tems that exhibit strong positive and negative pair correlations 
at small pair distances (e.g. equilibrium and nonequilibrium 
distributions of nonoverlapping particles) that nonetheless are 
not hyperuniform by virtue of the fact that their autocovari-
ance functions violate the sum rule (43) [49, 76, 81].

4.2.  Remarks about phase-separation and turing patterns

There are a variety of interesting spatial patterns that arise in 
biological and chemical systems that result from a competition 

between different pattern instabilities with selected wave-
lengths. Such phenomena have been theoretically described 
by, for example, Cahn–Hilliard equations  [82] and Swift–
Hohenberg equations [83], whose solutions can lead to irreg-
ular phase-separation and Turing patterns with a well-defined 
characteristic wavelength. Thus, it is plausible that binarized 
(two-phase) patterns obtained by thresholding such scalar fields 
might be hyperuniform or even stealthy and hyperuniform. An 
example of a Turing pattern with an irregular labyrinth-like 
structure [84] is shown in figure 6. The distance between adja-
cent ‘channels’ of the labyrinth-type pattern is a physical dis-
play of the wavelength (or wavenumber) that has been selected, 
which is roughly equal to the mean chord length �C [49]. Also, 
depicted in this figure  is the autocovariance function ( )χ rV  
associated with the thresholded binarized (two-phase) version 
of the Turing image. This function exhibits strong positive as 
well as negative correlations at short distances. The top panel 
of figure 7 shows the spectral density ˜ ( )χ kV  obtained from the 
thresholded image. Note that it exhibits a well-defined annulus 
in which scattering intensity is enhanced relative to that in 
the region outside this annulus, which is radially centered at 
≈�k 7C . The bottom panel of figure 7 shows the angular-aver-

aged spectral density from which we conclude that the thresh-
olded Turing pattern is neither stealthy nor hyperuniform.

While this outcome does not mean that thresholded Turing-
type patterns can never be hyperuniform, it does lead to the 
following question: are there disordered stealthy and hype-
runiform two-phase systems with spectral densities in which 
scattering is concentrated within some relatively thin annulus 
defined by a small range of wavenumbers away from the 
origin? To answer this question, we consider the following 
hypothetical, idealized scaled spectral functions to see if they 
can fall within this possible stealthy and hyperuniform class:

˜ ( ) ( ) ( )δ= −f c d k KkA A� (45)

and

˜ ( ) ( ) ⩽ ⩽⎧
⎨
⎩

=f
c d K k K

k
, ,

0, otherwise,B
B 1 2

� (46)

Figure 5.  Realizations of overlapping circular disks at 0.8852φ =  (left) and of a random checkerboard at 0.52φ = .
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where ( )δ k  is a radial Dirac delta function is d-dimensional 
Fourier space, >K K2 1,

( ) ( / )/π
=

Γ−

−
c d

d

K

2 2
A

d d

d

1 2

1
� (47)

and

( ) ( ) ( / ) ( )/π= Γ +
−

c d d
K K

K K
2 2 1 .B

d
d d

d d
2 1 2

1 2

� (48)

Using the results of appendix A, the corresponding hypothet-
ical scaled autocovariance function, which obeys the exact 
limiting conditions (21), are given by

( ) ( / ) ( )
/

/⎜ ⎟
⎛
⎝

⎞
⎠= Γ

−

−f
Kr

d J Krr
2

2 ,A

d

d

2 1

2 1� (49)

and

( ) ( ) ( )= −f F r K F r Kr ; ; ,B 2 1� (50)

where

( ) ( ) ( )
/

/⎜ ⎟
⎛
⎝

⎞
⎠π

=F r K c d
Kr

K J Kr;
1

2
.B

d
d

d

2

2� (51)

Using the results of appendix A, we can expand the afore-
mentioned putative autocovariance functions about r  =  0 to 
yield

( ) ( ) ( )= − +Of C d r rr 1A A
2 4� (52)

and

( ) ( ) ( )= − +Of C d r rr 1 ,B B
2 4� (53)

where CA(d) and CB(d) are positive d-dimensional constants. 
It immediately follows the autocovariance functions (49) 
and (50) cannot be realizable by two-phase media since such 
systems would have a vanishing specific surface s, i.e. the 
small-r expansion of a valid autocovariance function must be 

Figure 6.  Top left panel: image of a Turing pattern with a labyrinth-
like structure [84]. Bottom panel: the autocovariance function 

rV( )χ  associated with the thresholded version of the Turing image 
(with 1 21 2 /φ φ≈ = ), showing strong short-range order, including 
anti-correlations (negative values). The unit of distance is the mean 
chord length of the ‘yellow’ phase [49], which is roughly equal to 
the characteristic width of the ‘channels’.
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Figure 7.  Top panel: scattering pattern as obtained from the 
spectral density kṼ( )χ  associated with the thresholded version of the 
Turing image shown in figure 6. Bottom panel: angular-averaged 
spectral density, kṼ( )χ , obtained from the 2D scattering pattern 
shown in the top panel. The unit of distance used in both spectral 
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nonanalytic at the origin such that the slope is strictly negative 
(see section 2.2.2). This strongly suggests that scattering pat-
terns in which power is concentrated within some concentric 
ring of the origin cannot be derived from a two-phase medium. 
Indeed, any function that is analytic at the origin cannot be 
an autocovariance function that corresponds to a two-phase 
medium.

4.3.  General considerations

A general formalism has been proposed that enables the 
functional form of a realizable autocovariance function to be 
expressed by a set of chosen realizable basis functions [68]. 
For our limited purposes in this paper, we will make use of 
only some of these results. It is known that convex combi-
nations of a set of realizable scaled autocovariance functions 

( ) ( ) ( )�f f fr r r, , , m1 2  is itself a realizable autocovariance func-
tion ( )f r  [68], i.e.

∑ α=
=

( ) ( )f fr r ,
i

m

i i
1

� (54)

where ⩽ ⩽α0 1i  ( = …i m1, 2, , ) such that α∑ == 1i
m

i1 .
In what follows, we focus on basis functions that could cor-

respond to statistically homogeneous and isotropic two-phase 
media. A simple choice is the radial exponential function:

( ) ( / )= −f r ar exp ,1� (55)

which is itself a realizable autocovariance function for all 
positive and finite a [68]. For reasons discussed at the begin-
ning of this section, the monotonicity of f1 precludes it from 
ever corresponding to a hyperuniform two-phase system. It 
has been shown that a linear combination of f1 and the basis 
function

( ) ( / ) ( )θ= − +f r b qrr exp cos2� (56)

may be realizable for some parameters, but whether such a 
linear combination can ever correspond to a disordered hype-
runiform two-phase system has heretofore not been studied. 
Here b can be thought of as a characteristic correlation length 
and q determines the characteristic wavelength associated 
with the oscillations.

Therefore, we explore here whether a disordered hyperuni-
form two-phase can have an autocovariance function of the 
form

( ) ( / ) ( / ) ( )α α θ= − + − +f r a r b qrr exp exp cos ,1 2� (57)

where α α+ = 11 2 . For simplicity, we examine two special 
cases. First, we consider the instance in which α = 01 , α = 12  
and θ = 0, i.e.

( ) ( / ) ( )= −f r b qrr exp cos .� (58)

Notice that the specific surface corresponding to (58) is given 
by ( )/( )β φ φ=s d b 1 2 , where ( )β d  is the d-dimensional con-
stant specified in (16). The hyperuniformity sum rule (44) pro-
vides conditions on the parameters b and q, which will depend 
on the dimension. For example, for d  =  1, we immediately 
conclude that (58) can never correspond to a hyperuniform 
medium because (44) cannot be satisfied. On the other hand, 

for d  =  2 and d  =  3, hyperuniformity requires that (qb)2  =  1 
and 3(qb)2  =  1, respectively, implying that the autocovariance 
function for a hyperuniform system in a particular dimen-
sion generally does not correspond to a hyperuniform system 
in another dimension. Moreover, these are only necessary 
conditions on the parameters b and q for the existence of a 
hyperuniform two-phase medium and one must still check 
whether the known realizability conditions for two-phase 
media (described section 2.2.2) are satisfied. As it turns out, 
all of these realizability conditions are satisfied, including the 
nonnegativity of the spectral density (see (17)). Under these 
hyperuniform restrictions, the small-k behavior of the spectral 
density ˜ ( ) ˜ ( )/( )χ φ φ≡f k kV 1 2  associated with (58) for d  =  2 
and d  =  3 are given respectively by

f

b
kb kb kb k qb

k 3

4

35

128

693

8192
, 1

2
2 6 10 14 2

π π π
= − + + =O

˜ ( ) ( ) ( ) ( ) ( ) [( ) ]

�
(59)

and

π π π π
= − + −

+ =O

˜ ( ) ( ) ( ) ( ) ( )

( ) [ ( ) ]

f

b
kb kb kb kb

k qb

k 27

4

243

32

3645

512

6561

1024

, 3 1 ,

3
2 4 8 10

14 2

� (60)

where we have made use of the small-argument asymptotic 
expansion of the Bessel function ( )νJ x  given in appendix A. 
Notice also that the hyperuniformity constraint prohibits mul-
tiple powers of four in the two-dimensional expansion (59) 
and multiple powers of six in the three-dimensional expansion 
(60). In the opposite asymptotic large-k limit, we respectively 
have for d  =  2 and d  =  3

˜ ( )
( )

→π
∼ ∞

f

b kb
k

k 2
,

2 3� (61)

and

˜ ( )
( )

→π
∼ ∞

f

b kb
k

k 8
, .

3 4� (62)

These results are consistent with the general asymptotic result (18).
Figure 8 shows the autocovariance function and spectral 

density for a selected set of hyperuniform parameters (b, q) 
in both two and three dimensions. Not surprisingly, the spec-
tral densities associated with autocovariance functional form 
(58) differ across dimensions. To verify that there are indeed 
disordered hyperuniform two-phase media that correspond to 
these autocovariance functions, well-established ‘construc-
tion’ (reconstruction) optimization techniques devised by 
Yeong and Torquato [49, 68, 85] are employed. Such proce-
dures utilize simulated-annealing methods that begin with a 
random initial guess for a digitized two-phase system (hyper-
cubic fundamental simulation box that is tessellated into finer 
hypercubic cells) satisfying a prescribed volume fraction. The 
fictitious energy is a sum of squared differences between a 
target correlation function (or corresponding spectral function) 
and the correlation function (or corresponding spectral func-
tion) of the simulated structure at any point along the evolution 
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process to the global energy minimum (ground state) as the 
fictitious temperature tends to zero. Here we target hyperuni-
form spectral densities associated with (58). The bottom panel 
of figure 8 shows a final construction in the case of two dimen-
sions that corresponds to (58) with extremely high numerical 
accuracy for a selected set of parameters. Apparently, the 
known realizability conditions on the function (58) are suf-
ficient to ensure that it corresponds to a two-phase medium 
in two dimensions. It is noteworthy that it becomes easier to 
ensure realizability of a hypothesized autocovariance function 
of specific functional form as the space dimension increases 
for exactly the same reasons identified for point-configuration 
realizability [51]. Figure  9 shows the volume-fraction vari-
ance ( )σ RV

2  as a function of the window radius R, as obtained 
analytically from (29), in the case of three dimensions for a 
selected set of parameters. We can analytically show that this 
specific three-dimensional volume-fraction variance has the 
following asymptotic scaling:

( ) ( → )σ ∼ ∞R
R

R
243

256

1
.V

2
4� (63)

As a second example, we consider the function (57) in 
which /α = 1 21 , /α = 1 22  and θ = 0, i.e.

( ) ( / ) ( / ) ( )= − + −f r a r b qrr
1

2
exp

1

2
exp cos ,� (64)

which provides greater degrees of freedom to achieve hype-
runiformity relative to the form (58). Here a and b are 
taken to be positive and thus characteristic length scales. 
The specific surface corresponding to (64) is given by 

( ) ( )/( )β φ φ= +s a b d ab2 1 2 , where ( )β d  is the d-dimen-
sional constant specified in (16). For d  =  1, we find that (64)  
can never correspond to a hyperuniform medium because 
(44) cannot be satisfied, which also was the case for the func-
tion (58). This indicates that the hyperuniformity condition 

Figure 8.  Top panel: hyperuniform autocovariance function rV( )χ  
given by (58) with 1 21 2 /φ φ= =  in two dimensions where b  =  1, 
q  =  1 and in three dimensions where b  =  1 and q 1 3/= . Middle 
panel: corresponding hyperuniform spectral density kṼ( )χ  in two 
and three dimensions. Bottom panel: a realization of a disordered 
hyperuniform two-phase system that corresponds to (58) in two 
dimensions with these parameters, as obtained using reconstruction 
techniques [49, 68, 85]. The final ‘energy’ is smaller than 10−9, 
indicating that the targeted function is achieved to very high 
accuracy.
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Figure 9.  Volume-fraction variance σ ( )RV
2  (multiplied by 

R4) as a function of the window radius using (58) with 
1 21 2 /φ φ= =  in three dimensions where b  =  1, q 1 3/= . The 

fact that this scaled variance asymptotes to a constant value 
(243 256 0.949 218 75/ = …) for large R implies that this three-
dimensional hyperuniform system has a variance that decays like 
R−4, which is consistent with the analytical formula (63).
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is more difficult to achieve in one dimension than in higher 
dimensions. For d  =  2 and d  =  3, the hyperuniformity sum 
rule requires that

(( ) )
( )

/
=

−
+

a
b qb

qb

1

1

2 1 2

2� (65)

and

a
b qb

qb

3 1

1
,

2 1 3

2
=

−
+

( ( ) )
( )

/
� (66)

respectively. Even though these conditions ensure hyperuni-
formity in these dimensions, they are not sufficient to guar-
antee the nonnegativity of the spectral density (see (17)) for 
all k because the leading term in the series expansion of ˜ ( )f k  
about k  =  0 is generally quadratic in k but may have a nega-
tive coefficient. For example, for d  =  2, to ensure positivity of 
the quadratic term, qb must satisfy the following inequalities:

qb1
1

2
6 2 .< +⩽ ( )� (67)

If qb is equal to the upper bound in (67), the quadratic term 
vanishes identically such that the leading term in the expan-
sion of ˜ ( )f k  about k  =  0 is now quartic in k, which is to be 
contrasted with the hyperuniform spectral density associated 
with (58) that goes to zero quadratically in k in the limit →k 0. 
Under the aforementioned restrictions on the parameters a, 
b and q, all of the known realizability conditions described 
in section 2.2.2 are satisfied. Figure 10 shows both the auto-
covariance function and spectral density for a set of hyper-
uniform parameters in two dimensions. The bottom panel of 
figure 10 shows a realization obtained by the construction pro-
cedure [49, 68, 85] that corresponds to (64) in two dimensions 
with extremely high numerical accuracy for a selected set of 
parameters.

5.  Conclusions and discussion

For two-phase media in d-dimensional Euclidean space Rd in 
which one of the phases is a packing of spheres, we presented 
explicit exact expressions for the autocovariance function 
and associated spectral density as well as upper bounds on 
the volume-fraction variance in terms of the number variance 
for any window radius R. We used these results to determine 
the necessary and sufficient conditions for a sphere packing 
to be stealthy and hyperuniform as well as to establish rig-
orously the requirements for a packing comprised of spheres 
of different sizes to be multihyperuniform. We then consid-
ered hyperuniformity for general two-phase media in Rd 
outside the class consisting of sphere packings. We applied 
realizability conditions for an autocovariance function and its 
associated spectral density of a two-phase medium and incor-
porated hyperuniformity as a constraint in order to derive new 
conditions. We showed that some functional forms can imme-
diately be eliminated from consideration and identified other 
forms that are allowable. Contact was made with well-known 
two-phase microstructural models (e.g. overlapping spheres 
and checkerboards) as well as irregular phase-separation and 

Figure 10.  Top panel: hyperuniform autocovariance 
function rV( )χ  given by (64) in two dimensions with 

a 1 3 2 3 3 0.674 790 19
3 2( ) /( ( ))/= + + = … 

b 6 2 2 1.931 8516( )/= + = …, q  =  1 and 1 21 2 /φ φ= = . 
Middle panel: corresponding hyperuniform spectral density kṼ( )χ  
in two dimensions. Bottom panel: a realization of a disordered 
hyperuniform two-phase system that corresponds to (64) in two 
dimensions with these parameters, as obtained using reconstruction 
techniques [49, 68, 85]. The final ‘energy’ is smaller than 10−9, 
indicating that the targeted function is achieved to very high 
accuracy.
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Turing-type patterns. We ascertained a family of autocovari-
ance functions that are realizable by disordered hyperuniform 
two-phase media in arbitrary space dimensions. Realizations 
of disordered hyperuniform two-phase media with targeted 
spectral densities were explicitly constructed. These studies 
elucidate the nature of hyperuniformity in the context of het-
erogeneous materials.

In a subsequent work, we will explore more fully the 
explicit construction of disordered hyperuniform two-phase 
media and characterize their higher-order statistics (beyond 
the two-point autocovariance function) as well as host of other 
microstructural descriptors that are well-known in homog-
enization theory [49]. A particularly important goal of such 
studies will be to develop a deeper understanding of the effect 
of space dimensionality on the microstructural descriptors, 
including the relevance of the ‘decorrelation principle’ as the 
space dimension is increased [51].

A fruitful direction for future research would be the study 
and determination of the effective physical properties of dis
ordered hyperuniform two-phase systems. There is already 
evidence demonstrating that disordered hyperuniform cel-
lular network structures possess novel photonic properties 
[34–36]. However, the investigation of the bulk properties 
of general disordered hyperuniform two-phase materials and 
their technological relevance is essentially uncharted terri-
tory, and its exploration may offer great promise for novel 
materials by design.

Very recently, the hyperuniformity concept was gener-
alized to spin systems and shown to exist as disordered 
spin ground states [86]. The implications and significance 
of the existence of such disordered spin systems warrants 
further study, including whether their bulk physical prop-
erties, like their many-particle system counterparts, are 
singularly remarkable, and can be experimentally real-
ized. Finally, we note that the notion of hyperuniformity 
has recently been generalized to include surface-area fluc-
tuations in two-phase media as well as fluctuations associ-
ated with random scalar and vector fields [72]. Now that 
we know what to look for, different varieties of disordered 
hyperuniform systems seem to be arising in surprising 
places and contexts, and hence offer both intriguing fun-
damental and applied research challenges and questions 
for the future.
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Appendix A.    Fourier transformation in  
d dimensions

We employ the following definition of the Fourier trans-
form of some scalar function ( )f r  that depends on the 
vector r in Rd:

˜ ( ) ( ) [ ( )]
R∫= − ⋅f fk r k r rexp i d ,

d
� (A.1)

where k is a wave vector. When it is well-defined, the corresp
onding inverse Fourier transform is given by

( ) ˜ ( ) [ ( )]
R

⎜ ⎟
⎛
⎝

⎞
⎠ ∫π

= ⋅f fr k k r k
1

2
exp i d .

d

d
� (A.2)

If f is a radial function, i.e. f depends only on the modulus 
=| |r r  of the vector r, then its Fourier transform is given by

f k r f r
J kr

kr
r2 d ,

d d d

d
2

0

1 2 1

2 1∫π=
∞

− −
−

˜ ( ) ( ) ( )
( )

( )
( / )

( / )� (A.3)

where =| |k k  is wavenumber or modulus of the wave vector k 
and ( )νJ x  is the Bessel function of order ν. The inverse trans-
form of ˜ ( )f k  is given by

( )
( )

˜ ( )
( )

( )
( / )

( / )∫
π

=
∞

− −
−

f r k f k
J kr

kr
k

1

2
d .

d
d d

d
2 0

1 2 1

2 1� (A.4)

We recall the first several terms in the series expansion of ( )νJ x  
about x  =  0:

J x
x x x x

x
2

1

2

2

2

2 3

2

6 4
,

2 4 6
8

ν ν ν ν
=
Γ +

−
Γ +

+
Γ +

−
Γ +

+ν

ν ν ν ν
ν

+ + +
+O( ) ( / )

( )
( / )

( )
( / )

( )
( / )

( )
( )

�
(A.5)

which we apply in section 4.

Appendix B.    Packings of spheres with a size  
distribution and multihyperuniformity

Both the autocovariance and associated spectral density 
for packings of hard spheres with a continuous or discrete 
size distribution at overall number density ρ have been 
derived [49, 78]. We collect these results here and apply 
them to establish rigorously the requirements for multihy-
peruniformity [28].

In the case of a continuous distribution in radius R charac-
terized by a probability density function ( )Rf  that normalizes 
to unity,

( )∫ =
∞
R Rf d 1,

0
� (B.1)

the packing fraction and the autocovariance function are given 
respectively by [49, 78]

( ) ( )∫φ ρ=
∞
R Rf v R d

0
1� (B.2)

and
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f v r

f f m r m r h

r

r

; d d

d ; ; ; , ,

V 0 2
int 2

0 1
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2 1 2 1 2 1 2

∫ ∫

∫

χ ρ ρ= +

× ⊗ ⊗

∞ ∞

∞
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( ) ( ) ( ) ( ) ( )
� (B.3)

where ( )R Rh r; ,1 2  is the appropriate generalization of the total 
correlation function for the centers of two spheres of radii R1 
and R2 separated by a distance r. Fourier transformation of 
(B.3) gives the corresponding spectral density

f m k

f f m k m k h

k

k

; d d

d ; ; ; , .

V 0
2 2

0 1

0
2 1 2 1 2 1 2

∫ ∫

∫

χ ρ ρ= +

×

∞ ∞

∞

R R R R

R R R R R R R

˜ ( ) ( ) ˜ ( )

( ) ( ) ˜ ( ) ˜ ( ) ˜( )
� (B.4)

One can obtain corresponding results for spheres with M 
different radii …a a a, , , M1 2  from the continuous case by letting

( ) ( )∑
ρ
ρ
δ= −

=

Rf R a ,
i

M
i

i
1

� (B.5)

where ρi is the number density of type-i particles, respectively, 
and ρ is the total number density. Substitution of (B.5) into 
(B.2)–(B.4) yields the corresponding packing fraction, auto-
covariance function and spectral density, respectively, as

( )∑φ ρ=
=

v a ,
i

M

i i
1

1� (B.6)

∑ ∑∑χ ρ ρ ρ= + ⊗ ⊗
= = =
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M

i i
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i j i j i j
1

2
int

1 1

� (B.7)
and

∑ ∑χ ρ ρ ρ= +
= ≠

˜ ( ) ˜ ( ) ( ) ˜ ( ) ˜ ( ) ˜( )m k a S a m k a m k a h a ak k k; ; ; ; ; , ,V
i

M

i i i
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i j i j i j
1

2

� (B.8)
where

( ) ˜( )ρ≡ +S a h a ak k; 1 ; ,i i i i� (B.9)

is the structure factor for type-i particles. It immediately fol-
lows that the spectral density at the origin is given by

˜ ( ) ( ) ( )

( ) ( ) ˜( )

∑

∑

χ ρ

ρ ρ

=

+

=

≠

v a S a

v a v a h a a

0 0;
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V
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1
1
2

1 1

�

(B.10)

We now prove that when each subpacking associated 
with each component is hyperuniform, i.e. the first term on 
the right side of (B.10) is zero, the second term must also be 
identically zero (sum of cross terms vanish), leading to the 
hyperuniformity of the entire packing, i.e. ˜ ( )χ =0 0V . Such a 
polydisperse packing has been called multihyperuniform [28].

We begin the proof by considering the spectral density ˜ ( )χ kV  
for a general, very large but finite-sized two-phase heteroge-
neous system that is contained within hypercubic fundamental 

cell in Rd of side length L and volume V  =  Ld subjected to 
periodic boundary conditions, which is given by [67]:

˜ ( )
˜ ( )

χ =
| |

≠
J

V
k

k
k 0, ,V

2

� (B.11)

where ˜ ( )J k  is the discrete Fourier transform of phase indicator 
function minus the phase volume fraction, which generally 
is a complex number for any ≠k 0. Ultimately, we take the 
thermodynamic limit to make contact with (B.10). Consider 
the two-phase system to be a finite packing of N spheres con-

sisting of M components. Let ( ) ( )…r r, ,i
N
i

1 i
 denote the positions 

of type-i spheres, where Ni is the total number of spheres of 
radius ai and = …i M1, 2, ,  such that = ∑ =N Ni

M
i1 . The dis-

crete Fourier representation of the ‘scattering amplitude’ ˜ ( )J k  
for such a multicomponent packing was given in [73], which 
can be recast as follows:

˜ ( ) ˜ ( ) ( )∑=
=

J m k a f ak k; ; ,
i

M

i i
1

� (B.12)

where

( ) ( )( )∑= ⋅
=

f ak k r; exp i ,i
n

N

n
i

1

i

� (B.13)

and the product ˜ ( ) ( )m k a f ak; ;i i  represents the scattering 
amplitude for the ith component (subpacking). Substitution of 
(B.12) into (B.11) yields

∑ ∑χ ρ ρ ρ= +
= ≠

S H˜ ( ) ˜ ( ) ( ) ˜ ( ) ˜ ( ) ( )m k a a m k a m k a a ak k k; ; ; ; ; , ,V
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i i i
i j
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i j i j i j
1

2

� (B.14)

where

( )
( )

=
| |

S a
f a

N
k

k
;

;
i

i

i

2

� (B.15)

is the discrete structure factor for the ith subpacking and

( )
( ) ( )

=H a a
f a f a V

NN
k

k k
; ,

; ;
.i j

i j

i j
� (B.16)

The similarity between this discrete representation of the 
spectral density of a multicomponent packing and the con-
tinuous version (B.8) is readily apparent.

The chosen hypercubic fundamental cell restricts the 
wave vectors to take discrete values, which are defined by 
the vectors that span the reciprocal hypercubic lattice, i.e. 

( / / / )π π π= �n L n L n Lk 2 , 2 , , 2 d1 2 , where ni ( = …i d1, 2, , ) 
are the integers. Thus, the smallest positive wave vectors have 
magnitude /π=k L2min . Now we constrain the scattering 
amplitude for each component to be zero at | |= kk min, 
which from (B.12) implies that ˜ ( )| |= =J kk 0min  and hence 
˜ ( )χ | |= =kk 0V min . This in turn means that the second sum 
(B.14) involving the cross terms must vanish at | |= kk min. 
To complete the proof, we must consider the thermodynamic 
limit because the ensemble-average relation (B.10) applies 
under this condition. Assuming ergodic media, the zero-wave-
vector behavior of the spectral density defined by (B.10) can be 
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extracted from the discrete spectrum (B.11) in the thermody-
namic limit, i.e.

˜ ( ) ˜ ( )
→

χ χ≡ | |=
∞

k0 klim .V
N V

V
,

min� (B.17)

The limit here is taken at constant number density /ρ = N V , 
implying that →k 0min . Under the prescribed conditions men-
tioned above, we find that ˜ ( )χ =0 0V , which completes the 
proof.
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