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A two-point correlation function provides a crucial yet an incomplete characterization of a microstructure
because distinctly different microstructures may have the same correlation function. In an earlier Letter [Gommes,
Jiao, and Torquato, Phys. Rev. Lett. 108, 080601 (2012)], we addressed the microstructural degeneracy question:
What is the number of microstructures compatible with a specified correlation function? We computed this
degeneracy, i.e., configurational entropy, in the framework of reconstruction methods, which enabled us to
map the problem to the determination of ground-state degeneracies. Here, we provide a more comprehensive
presentation of the methodology and analyses, as well as additional results. Since the configuration space of a
reconstruction problem is a hypercube on which a Hamming distance is defined, we can calculate analytically the
energy profile of any reconstruction problem, corresponding to the average energy of all microstructures at a given
Hamming distance from a ground state. The steepness of the energy profile is a measure of the roughness of the
energy landscape associated with the reconstruction problem, which can be used as a proxy for the ground-state
degeneracy. The relationship between this roughness metric and the ground-state degeneracy is calibrated using
a Monte Carlo algorithm for determining the ground-state degeneracy of a variety of microstructures, including
realizations of hard disks and Poisson point processes at various densities as well as those with known degeneracies
(e.g., single disks of various sizes and a particular crystalline microstructure). We show that our results can be
expressed in terms of the information content of the two-point correlation functions. From this perspective, the
a priori condition for a reconstruction to be accurate is that the information content, expressed in bits, should
be comparable to the number of pixels in the unknown microstructure. We provide a formula to calculate the
information content of any two-point correlation function, which makes our results broadly applicable to any
field in which correlation functions are employed.
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I. INTRODUCTION

Correlation functions are important structural descriptors
that arise in a variety of disciplines such as solid state physics
[1], signal processing [2], computer vision [3], statistical
physics [4], geostatistics [5], and materials science [6–8].
Many techniques for structural characterization of materials
over a wide range of length scales provide data in the form of
correlation functions including, but not limited to, scattering
methods [9,10]. Other examples are absorption spectroscopy
[11], energy transfer analysis [12], nuclear magnetic resonance
[13], and also gray-scale image analysis [14,15]. Moreover,
in the case of in situ studies with a nanometer resolution
[16–19], correlation functions are often the only data available
experimentally.

Despite the widespread use of correlation functions, the
nature of the structural information they contain remains an
open area of active research [20–28]. The central question of
the present paper can be put as follows: How accurately is a
microstructure known when the only piece of data available is
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a two-point correlation function? We shall focus our analysis
on two-phase microstructures and the two-point correlation
function S2(r), which is defined to be the probability that two
random points at a distance r from one another both belong to
the same phase [7].

Two-point statistics are not sufficient to determine a
microstructure unambiguously. The specification of a given
two-point function S2(r) is equivalent to defining a macrostate
of the system, the degeneracy of which can be expressed as
a configurational entropy. In particular, all space transfor-
mations that preserve distances—translation, rigid rotation,
and inversion—lead to microstructures with identical two-
point statistics. Following previous work, we will call such
degeneracies trivial [26,27]. The focus of the present paper is
on nontrivially degenerate microstructures, which cannot be
obtained from each other through any of the aforementioned
trivial transformations.

Examples of nontrivially degenerate microstructures are
Poisson polyhedra tesselations of three-dimensional space
[3] and Debye random media [21,29,30], which although
having distinct microstructures have identical S2(r). Nontrivial
degeneracy is not limited to such infinite systems. Examples
of finite point patterns having the same two-point statistics
were given as early as 1939, and Patterson coined the word

051140-11539-3755/2012/85(5)/051140(16) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.080601
http://dx.doi.org/10.1103/PhysRevE.85.051140


C. J. GOMMES, Y. JIAO, AND S. TORQUATO PHYSICAL REVIEW E 85, 051140 (2012)

“homometric” to qualify them [20,31]. Very recently, general
equations have been derived that can in principle be solved
analytically to obtain homometric microstructures [26,27]. In
the context of crystallography, the degeneracy of the structural
information contained in correlation functions is referred to as
the phase problem.

The phase problem, however, is not universally applicable.
A spectacular counterexample is the so-called direct method of
crystallography [32], for which Hauptman and Karle received
the 1985 Nobel prize for chemistry. In the field of computer
vision, it has been shown that finite textures are completely
characterized by their orientation-dependent correlation func-
tions [33]. Many examples of microstructures with a low
degeneracy, which can be accurately reconstructed from their
two-point correlation functions alone, have been discussed
in the field of theoretical materials science [24,25,34,35].
All these examples have in common that they incorporate
orientation information.1 The focus of the present work is on
radial correlation functions in which orientation information
is averaged out. This simplification is relevant to many exper-
imental contexts, notably small-angle scattering [9,10], where
the correlation function is generally rotationally averaged
through the measurement of powder scattering patterns, as
well as to isotropic disordered systems in general [7].

The understanding of the structural information in radial
correlation functions has been considerably advanced through
the use of reconstruction algorithms, which aim at producing
microstructures with a specified correlation function via the
minimization of a prescribed energy functional [21,22,36–38].
In the case of a reconstruction based on two-point corre-
lation functions, a natural choice for the energy functional
is [21,37]

E =
∑

r

[Ŝ2(r) − S2(r)]2, (1)

where Ŝ2(r) is the target two-point correlation function,
S2(r) is the correlation function of the microstructure, i.e.,
the configuration being optimized, and the sum is over
all measurable distances. This definition of the energy is
equivalent to a norm-2 error: it is non-negative and it vanishes
only for those configurations that satisfy S2(r) = Ŝ2(r). In this
context, the question of the degeneracy associated with a given
correlation function is equivalent to determining the number
of microstructures having zero energy, i.e., the ground-state
degeneracy of the energy functional [39].

The minimization of Eq. (1) is generally done by dis-
cretizing the microstructure on a grid with periodic boundary
conditions, and by using either a steepest descent [34,36] or a
simulated annealing [21] algorithm. In the case of a two-phase
microstructure, which can be thought of as an image with
black and white pixels, the simulated annealing reconstruction
proceeds as follows. Starting from any configuration, with
value Ei of the energy functional Eq. (1), a black pixel is chosen
randomly and moved to any available white position. The

1In the case of the direct method of crystallography, the absolute
orientation is generally lost through the measurement of a powder
scattering pattern. The orientation with respect to the unit cell,
however, is known from the indexing of the Bragg peaks.

function S2(r) is updated and the new energy Ej is calculated.
The move is accepted with probability

pi→j = min

{
1,

exp(Ei/T )

exp(Ej/T )

}
, (2)

where T is a temperature parameter [40]. All energy-
decreasing moves are therefore accepted but some energy-
increasing moves are accepted as well, depending on the
chosen temperature. The latter moves are necessary to
ensure that the entire configuration space is explored in
principle, and that the system is not trapped in a local
minimum of E. Simulated annealing algorithms consist in
starting at a high temperature, and progressively decreasing
the temperature until convergence is reached (E ≈ 0). This
type of approach has been widely used for microstructure
reconstruction, in the context of both applications [41–44]
and theoretical investigations [21,23,35,45]. The latter include
generalizations to other types of statistical microstructure
descriptors besides S2(r) [37], most notably to higher-order
correlation functions [22,38] as well as to cluster correlation
functions [38,46].

Examples of reconstructions of two-phase microstructures
under periodic boundary conditions are given in Fig. 1. In
the case of the single disk, the reconstructed microstructure
is almost identical to the target, except for a translation
(top portion of Fig. 1). In the case of the reconstruction
of hard disks (middle portion of Fig. 1), the characteristic
size of the disks as well as the average distance between
them is recovered. However, an exact reconstruction of the
target configuration is not possible; spurious objects are also
formed through the partial merging of neighboring disks. In
the case of a realization of a Poisson point process (randomly
coloring a pixel black according to a prescribed volume
fraction), the reconstructed and the target microstructures
might look superficially similar because they both appear to
be random distributions of black pixels (bottom portion of
Fig. 1). However, the two microstructures have very little in
common if one is interested in the exact configurations of
the pixels, although an excellent match is obtained between
S2(r) and Ŝ2(r). This illustrates the concept of nontrivial
degeneracy [26,27,31].

In a recent Letter [39], we presented a general theoretical
framework for estimating quantitatively the structural degen-
eracy corresponding to any specified correlation function. This
was achieved by mapping the problem to the estimation of a
ground-state degeneracy through the use of Eq. (1). Here we
provide a more comprehensive presentation of the methodol-
ogy and analyses, including a quantitative characterization of
the energy landscape associated with the reconstruction as well
as a detailed derivation of the degeneracy metric. Moreover,
we show that our results can be expressed in terms of the
information content of the two-point correlation functions.
Although the present work focuses on two-dimensional media
in Euclidean space, our procedure can be applied in any space
dimension and generalized to non-Euclidean spaces (e.g.,
compact and hyperbolic spaces).

The remainder of the paper is organized as follows. In
Sec. II, we discuss the degeneracy of the two-point statistics
for a variety of microstructures that are used as benchmarks
throughout the rest of the paper. We consider successively
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FIG. 1. (Color online) From top to bottom: reconstructions of a
single disk, hard disks, and the realization of a Poisson point process
under periodic boundary conditions. In each case, the target (left) and
reconstructed (right) microstructures are shown. The target (•) and
reconstructed (−) correlation functions are indistinguishable on the
scale of the figure. The size of the grid is 32 × 32 pixels with N1 =
200. These examples strongly suggest that the two-point function of
a single sphere under periodic boundary conditions is only trivially
degenerate through translation, but that the two-point degeneracy of
a Poisson point process has a large nontrivial contribution.

small systems, for which all the configurations can be
enumerated, intermediate systems, for which the degeneracy
can be determined via a Monte Carlo method we presented
elsewhere [39], and large systems, for which neither of
the aforementioned two methods applies and one needs to
use the reconstruction method. In Sec. III, we devise an
analytical method, based on a random walk in configuration
space, to characterize the energy landscape associated with
reconstruction. In particular, we determine a characteristic
energy profile for the basin of each ground state. In Sec. IV,
we show that the ground-state degeneracy of reconstruction
problems is related to the roughness of the energy landscape.
We introduce a roughness metric that can be calculated from
Ŝ2(r) alone, and we show definitively that it is correlated with
the microstructure degeneracy. In Sec. V, the degeneracy is
expressed in terms of the information content of Ŝ2(r), and
a formula is proposed relating the roughness metric to this
information content. The practical usefulness of our results is
discussed.
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D
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D
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FIG. 2. Examples of small-system-size microstructures (under
periodic boundary conditions) having different two-point degenera-
cies. From A to E, the degeneracies are �0 = N ,2N ,8N ,12N ,16N ,
with N the total number of pixels in the grid (see text). Systems C–E
have a nontrivial contribution to their degeneracy.

II. THE DEGENERACY OF TWO-POINT STATISTICS

A. Small-system-size microstructures: Countable examples

The present paper is restricted to two-phase digitized mi-
crostructures, which can be thought of as images with N1 black
pixels and N0 = N − N1 white pixels. However, our analysis
can be easily generalized to multiphase microstructures. We
shall first consider the very small microstructures of Fig. 2 with
N1 = 4. They will be analyzed in some detail and will serve as
a benchmark for analytical methods applicable to larger and
more complex microstructures.

For any finite microstructure it is always possible to refer to
the pixels through a linear index, i = 1–N , independently of
the actual dimensionality. A finite microstructure is therefore
completely characterized by an N -dimensional vector, with
components I (i) equal to 1 when point i is a black pixel, and
to 0 otherwise. The two-point correlation function S2(r) of
the black phase is defined as the probability that two random
pixels at a distance r from one another are both black [7]. This
can be written formally as

S2(r) = 1

Nωr

N∑
i=1

N∑
j=1

I (i)I (j )Dr (i,j ), (3)

where Dr (i,j ) takes the value 1 if the distance between pixels
i and j is r , and 0 otherwise. The quantity ωr is defined as
ωr = ∑

i Dr (i,j ). In Eq. (3) the double sum counts the pairs
of black pixels separated by a distance r , and the prefactor
normalizes that count by the total number of pixel pairs at a
distance r from one another. The periodic boundary conditions
are incorporated in the definition of the operator Dr (i,j ). We
assume in the rest of the paper that the discretizing grid is
uniform in the sense that ωr is independent of j .

The use of a discrete pixel grid is equivalent to a “quantizer”
problem [47], in which every point of the microstructure is
quantized to the centroid of its closest pixel. The distances
r between pairs of points are therefore approximated by
distances that are compatible with the grid. A square grid is
used throughout the present paper. For finite-size systems, the
quantization naturally introduces some grid-specific artifacts
[48]. However, the quantization error decreases and becomes
zero in the limit of infinitely large microstructures.

051140-3



C. J. GOMMES, Y. JIAO, AND S. TORQUATO PHYSICAL REVIEW E 85, 051140 (2012)

TABLE I. Number of pairs P (r) = NωrS2(r)/2 in microstruc-
tures A–E of Fig. 2. Note that P (r) is identical for configurations C1

and C2, D1 and D2, and E1 and E2.

r 1
√

2 2
√

5
√

8 3
√

10
√

13
√

18

PA(r) 0 0 0 0 0 4 0 0 2
PB (r) 0 1 0 4 0 0 0 0 1
PC(r) 2 1 0 2 1 0 0 0 0
PD(r) 0 1 2 0 1 0 2 0 0
PE(r) 1 1 0 2 1 0 1 0 0

The two-point correlation functions of the microstructures
of Fig. 2 are given in Table I under the form P (r) =
NωrS2(r)/2. The quantity P (r) is equal to the number of
pairs of points at distance r from one another. Note that
although configurations C1 and C2 are different, they have
identical two-point characteristics. The same applies to D1

and D2, as well as to E1 and E2. A complete enumeration of
all microstructures with N1 = 4 shows that there is no other
configuration with the same S2(r).

Configuration A in Fig. 2 is uniquely defined by its
two-point correlation function, and therefore is only trivially
degenerate. On grids with N points the total number of
translations is N ; the number of rotations is 1, 2, or 4,
depending on the rotational symmetry of the configuration; and
the number of mirror configurations is 1 or 2, depending on its
chirality. Due to the symmetry and chirality of configuration
A, only translation contributes to its degeneracy, which is
therefore �0 = N . In the case of configuration B, the two
possible orientations contribute an extra factor 2, i.e., �0 =
2N .

Configurations C1 and C2 are the “kite and trapezoid”
examples discussed in Refs. [20,26,27], which are non-trivially
degenerate. In this case, �0 = 2 × 4 × N , where the factor 2
is the nontrivial contribution, and the factor 4 accounts for the
possible orientations.

Configurations D1 and D2 are also nontrivially degenerate.
Configuration D2 is, however, chiral so it has to be counted
twice. This leads to �0 = (1 + 2) × 4 × N . Finally, the non-
trivially degenerate configurations E1 and E2 are both chiral.
This leads to �0 = (2 + 2) × 4 × N .

B. Intermediate-system-size microstructures:
Monte Carlo analysis

The complete enumeration of degenerate microstructures
is intractable for systems even barely larger than those
represented in Fig. 2. In the present section, we discuss a
Monte Carlo (MC) algorithm for estimating �0, which we
introduced previously [39]. It can be applied to larger systems.

The approach is based on a general MC algorithm for
estimating the density of states (DOS) developed by Wang
and Landau [49,50] and further improved and analyzed by
others [51–53]. The algorithm has been applied to a host of
problems in condensed matter physics [54], in biophysics [55],
and in logic [56]. The DOS �(E) is defined as the number
of states having energy equal to E. The logarithm of �(E) is
equal to the entropy calculated in the microcanonical ensemble
associated with Eq. (1). The ground-state degeneracy �0 is the
value taken by �(E) for E = 0.

A canonical Monte Carlo simulation with transition prob-
ability given by Eq. (2) leads the system to visit any energy
with a probability p(E) ∼ exp(−E/T ) [57]. The algorithm of
Wang and Landau is based on the observation that a transition
probability of the form

pi→j = min

{
1,

�(Ei)

�(Ej )

}
(4)

would lead the system to visit all energies with equal
probability. The density of states �(E) is, however, unknown
so the algorithm is iterative.

The starting value is set to �(E) = 1 for all energies, and
the system is allowed to evolve according to Eq. (4), while
updating a histogram H (E). Each time an energy is visited the
corresponding bin is updated, H (E) → H (E) + 1, and the
estimated density of states is updated according to �(E) →
F × �(E) where F is a numerical factor larger than 1. The
evolution continues according to Eq. (4) with the updated value
of �(E). The evolution is stopped when a flat histogram is
obtained. At this point, the histogram H (E) is reset to 0, F

is reduced to a value closer to 1, and the evolution starts over
again. The entire procedure is repeated until F becomes lower
than a prescribed accuracy. Algorithmic details are provided
in the Supplemental Material [58].

The accuracy of the MC algorithm was tested by applying
it to the microstructures of Fig. 2. The results are plotted in
Fig. 3 in the form of the cumulative DOS

N�(E) =
∑
e�E

�(e). (5)

The MC algorithm provides �(E) only to within an unknown
multiplicative constant, which is determined by requiring∑

E �(E) to be equal to the total number of configurations
�tot. The latter is equal to the number of different ways in
which N1 black pixels can be chosen among a total of N

possible pixels, i.e.,

�tot =
(

N

N1

)
. (6)

10
−5

10
−4

10
−3

10
1

10
2

10
3

10
4

10
5

10
6

N
Ω

(E
)

E

FIG. 3. (Color online) Cumulative DOS associated with the
reconstruction of configurations A (�), C (�), and E (◦) of Fig. 2.
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FIG. 4. (Color online) Top, from left to right: Single disk, hard
disks, and Poisson point process realization. Bottom: Cumulative
DOS associated with their reconstruction from S2(r) in the case of
the disk (�), hard disks (�), and the Poisson point process (◦). Each
curve is the overlap of three independent MC calculations. The size
of the grid is 8 × 8 pixels under periodic boundary conditions, and
N1 = 13.

The cumulative DOS plotted in Fig. 3 satisfies N�(E → ∞) =
�tot and N�(E → 0) = �0.

Three independent MC estimations have been calculated
for each microstructure in Fig. 2, yielding three independent
estimates of �0. The results are 66 ± 7 for configuration A
compared to the exact value 64; 140 ± 6 for configuration
B compared to 128; 500 ± 68 for configuration C compared
to 512; 769 ± 18 for configuration D compared to 768; and
991 ± 85 for configuration E compared to 1024. The exact
values are those calculated in Sec. II A with N = 64. The
agreement with the MC estimates is excellent.

Figure 4 shows MC estimates of the density of states for
larger microstructures, with N1 = 13 on an 8 × 8 grid. The
microstructures are qualitatively similar to those of Fig. 1,
namely, a single disk, hard disks, and a Poisson point process,
all under periodic boundary conditions. In the case of a single
disk, the MC estimation provides the value �0 = 58 ± 8,
corresponding to the 64 possible translations. This confirms
that the disk is only trivially degenerate. By contrast, the value
found for the Poisson point process is �0 = (11 ± 1) × 106,
which is orders of magnitude larger than any possible trivial
contribution from translation and rotation. In the case of the
hard disks, we find �0 = (23 ± 4) × 103.

C. Large-system-size microstructures

The MC algorithm does not converge for systems larger
than about 10 × 10 pixels. With larger systems the criterion for
flat histograms is rarely reached, even with as many as 109 MC
steps. Moreover, when flat histograms are indeed obtained, the
estimated value of �0 is much smaller than 1, which shows that

the algorithm explores only a small fraction of the complete
configuration space. These numerical difficulties are consistent
with previous observations that flat-histogram algorithms have
a convergence time that increases exponentially with system
size [51].

It is therefore difficult to estimate the S2 degeneracy of
systems as large as those shown in Fig. 1, except in the
particular case where the microstructure is only trivially
degenerate. It has to be stressed that reconstructing exactly
a degenerate microstructure is very unlikely. Therefore, when-
ever a reconstruction leads to a translated, rotated, and inverted
version of the target, this can be considered as very strong
evidence that the microstructure is only trivially degenerate. In
the remainder of the paper, we shall refer to a microstructure as
being nondegenerate, whenever it has only a trivial degeneracy.

In continuous Euclidean space under periodic boundary
conditions, an example of a nondegenerate microstructure
is provided by the single sphere (composed of an infinite
number of pixels). This results from the observation that S2(0)
is equal to the volume fraction of the solid phase and that
the negative slope of S2(r) for r → 0 is proportional to its
surface area [29]. A sphere is nondegenerate because it is the
microstructure that realizes the lowest possible surface area
for a given volume fraction: the two-point correlation function
of any microstructure other than a single sphere would have
a larger slope at the origin, which would result in a positive
energy according to Eq. (1).

This observation can be expressed in a way that generalizes
to discrete microstructures: For a given number of black
pixels N1, a single sphere is nondegenerate because it is
the microstructure that realizes the largest value of S2(ε),
where ε is a very small distance. Similarly, any configuration
with N1 = 13 other than the disk of Fig. 4 has a smaller
value of P (

√
2), where it is to be recalled that P (r) is the

number of pairs of points with distance r . The same applies
to configuration A of Fig. 2, which is not a disk: That
particular microstructure is nondegenerate because any other
configuration with N1 = 4 has a smaller value of P (3). The
origin of the degeneracy of hard-disk systems is touched on in
Sec. VI.

The analysis of nondegeneracy in terms of extremal values
of P (r) leads to nonintuitive results. When microstructures
are defined on a grid, distances and orientations are not
independent: For instance, a pair of points at a distance√

8 from one another is necessarily oriented at 45◦ with
respect to both axes. A very anisotropic microstructure such
as the crystal on the top of Fig. 5 minimizes P (r) for a set
of distances corresponding to orientations orthogonal to the
stripes. The figure clearly shows that S2(r) vanishes for a set
of well-defined distances. It should therefore not be surprising
that such a highly anisotropic microstructure is nondegenerate.
The nondegeneracy of the crystal is confirmed by the fact that
the reconstructed microstructure in Fig. 5 is a translated and
rotated copy of the target. The vertical discontinuity in the
middle of the reconstruction results simply from the target not
having the same periodicity as the box.

When a large crystal in a periodic box is split into a
collection of randomly oriented smaller crystallites (Fig. 5,
middle and bottom rows), its anisotropy is reduced and
there are no longer values of r at which P (r) is extremal.
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FIG. 5. (Color online) From top to bottom: Reconstructions of a
crystal and of two polycrystals with decreasing crystallite sizes. In
each case, the target (left) and reconstructed (right) microstructures
are shown. The target (•) and reconstructed (−) correlation functions
are indistinguishable on the scale of the figure. The size of the
grid is 128 × 128 pixels under periodic boundary conditions, and
N1 = 3000.

Accordingly the reconstruction becomes less accurate, which
means that the microstructure becomes more degenerate.
A more quantitative analysis of this issue is provided in
Sec. V.

III. CHARACTERIZATION OF THE ENERGY LANDSCAPE

A. The structure of configuration space C
The complete configuration space C of two-phase mi-

crostructures with N pixels is the set of vertices of an N -
dimensional hypercube [39]. This results from the properties
of the indicator vector I (i), which can take only values 0
and 1. Moving along a given N -dimensional direction (along
an edge of the hypercube) is equivalent to replacing a white
(black) with a black (white) pixel. In the example of Fig. 6,
any movement along the fourth dimension (joining the outer
and inner cubes) corresponds to replacing the upper left pixel
with one of different color.

In the situation relevant to reconstruction, not all the vertices
of the hypercube are accessible because the number of black

FIG. 6. (Color online) The configuration space C of a two-
phase microstructure is an N -dimensional hypercube on which the
Hamming distance can be defined. Any move along an N -dimensional
direction corresponds to changing the color of a particular pixel. In the
case of a 2 × 2 microstructure the configuration space is a tesseract,
with the fourth dimension represented as the edges joining the outer
and inner cubes (corresponding to the upper left pixel).

pixels is kept constant, i.e.,

N∑
i=1

I (i) = N1, (7)

which means that all realizable microstructures lie on the
intersection of the hypercube with a lower-dimensional hy-
perplane. Once a target correlation function Ŝ2(r) is specified,
each vertex is assigned an energy through Eq. (1).

What we refer to as the energy landscape is the set of
values taken by the energy functional E on the vertices of
the N -dimensional hyperplane. A reconstruction consists in
exploring the energy landscape until a vertex is found with
E = 0. The DOS �(E) determined in Sec. II B is the number
of vertices having a given energy E. The problem we address in
this section is that of the spatial variability of E in configuration
space C. This analysis is motivated by the observation, in
many fields of physics, that systems with large ground-state
degeneracies generally have a rough energy landscape [59,60].
If we can characterize the roughness of the energy landscape in
terms of Ŝ2(r) we can estimate the ground-state degeneracy �0.

In order to characterize the spatial variability of E in con-
figuration space, it is necessary to define a distance. A natural
choice is the Hamming distance, which counts the number of
edges between any two vertices. The Hamming distance within
the hyperplane defined by Eq. (7) takes only even values.
The distance d[A,B] between two microstructures A and B is
therefore defined as half the Hamming distance,

d[A,B] = 1

2

N∑
i=1

|IA(i) − IB(i)|, (8)

where IA(i) and IB(i) are the indicator vectors. In real space,
this distance d is the smallest number of Monte-Carlo-like
black pixel displacements that are required to pass from A

051140-6



MICROSTRUCTURAL DEGENERACY ASSOCIATED WITH A . . . PHYSICAL REVIEW E 85, 051140 (2012)

0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

E

n

0 1 2 3 4
0

0.5

1
x 10

−3

0 100 200 300
0

0.01

0.02

0.03

n

0 1 2 3 4
0

1

2
x 10

−4

0 100 200 300
0

0.5

1

1.5
x 10

−3

n

0 1 2 3 4
0

0.5

1
x 10

−4

FIG. 7. (Color online) Random walks in the configuration space C of a single (discretized) disk, hard disks, and a Poisson point process
(left to right), all on a 32 × 32 pixel grid under periodic boundary conditions, and with N1 = 200. The irregular curves are the energies visited
during particular realizations of the random walk, and the thick black line is the average value calculated analytically through Eq. (16). The
microstructures shown on top are the starting ground states and the configurations reached after n = 80 and n = 160 random moves.

to B. The largest possible distance is d = N1 when the two
microstructures have no pixel in common.2

B. Exploring the energy landscape with a random walk

The energy landscape can be characterized analytically
through a random walk in configuration space. This is illus-
trated in Fig. 7. Starting from a ground state of a reconstruction
problem, with Ŝ2(r) = S2(r), the system moves randomly to
any configuration at Hamming distance d = 1 from the current
configuration. This is equivalent to a standard Metropolis
Monte Carlo move with T → ∞ [see Eq. (2)]. When the
number of moves n increases, the random walk explores
the configuration space C over increasingly large Hamming
distances d from the starting ground state.

The rate at which the average energy 〈E〉(n) visited by
the random walk increases with the number n of moves
characterizes the energy landscape of a given reconstruction
problem. In the examples of Fig. 7, the energy curve of the
Poisson point process is steeper than that of the single disk,
which suggests smaller basins. We now proceed to analytically
calculate the values of 〈E〉(n) as a function of the characteristics
of the starting ground state.

The only a priori information about the ground states of a
given reconstruction problem is their one-point and two-point
characteristics: φ = N1/N and Ŝ2(r). The other character-
istics, in particular the higher-order correlation functions,
may differ significantly from one ground state to another.
Let us assume for now that the starting ground state of
the random walk is perfectly known through its indicator
vector I (i).

2We assume throughout the paper that black pixels are fewer than
white pixels, which does not limit the generality of the analysis.

Instead of using S2(r), it is convenient to use the equivalent
autocovariance χ (r) defined as

χ (r) = S2(r) − φ2, (9)

where φ = N1/N is the fraction of black pixels. The average
energy after n random moves can be written in terms
of χ (r) as

〈E〉(n) =
∑

r

χ̂2(r) + 〈χ2(r)〉(n) − 2χ̂ (r)〈χ (r)〉(n), (10)

where we have used the notations χ̂(r) = Ŝ2(r) − φ2, which
is associated with the ground state, and 〈·〉(n) for any average
value at step n. At each step of the random walk there are N0N1

possible moves, so that the total number of possible walks of
length n is (N0N1)n: The averages 〈·〉(n) are calculated over all
these possible paths. We now calculate successively 〈χ (r)〉(n)

and 〈χ2(r)〉(n), which are required to calculate 〈E〉(n) through
Eq. (10).

When a black pixel p is moved to position q previously
occupied by a white pixel, the indicator vector becomes

I ′(i) = I (i) + δ(i,q) − δ(i,p), (11)

where δ(i,q) is the Kronecker delta function. Using the
definition of S2(r), Eq. (3), the autocovariance is then found
to become

χ ′(r; p,q) = χ (r) + 2

Nωr

{
δ(r,0) − Dr (p,q)

+
∑

i

I (i)[Dr (q,i) − Dr (p,i)]

}
(12)
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for that particular move. The average value of χ ′(r; p,q) is
then simply calculated as

〈χ ′(r)〉 = 1

N0N1

∑
p q

I (p)[1 − I (q)]χ ′(r; p,q), (13)

where the factor I (p)[1 − I (q)]/(N0N1) accounts for the fact
that p and q are uniformly distributed over the black and white
phases, respectively.

Combining Eqs. (12) and (13), the average autocovariance
χ (r) after a single random move is found to be

〈χ ′(r)〉 = αχ (r) + O(N−2) (14)

with α = 1 − 2N/(N0N1). In Eq. (14) a term of the order of
N−2 has been neglected, which is justified for large values of
N . The complete equation can be found in the Supplemental
Material [58]. Equation (14) is valid only for r > 0. The value
for r = 0 depends only on the fraction of black pixels φ,
χ (0) = φ(1 − φ), and it is therefore a constant during the
random walk.

Because each random move is independent from the
previous one, the analysis leading to Eq. (14) can be repeated
in an iterative way. Taking into account that the starting
autocovariance function is χ̂(r), this leads to the following
simple result:

〈χ (r)〉(n) = χ̂ (r) αn. (15)

In the course of the random walk, the average autocovariance
function therefore converges towards that of a Poisson point
process [3,7] with χ (r) = 0 for all r > 0. The convergence is
exponential in the number of random moves and it occurs in
about N0N1/(2N ) moves.

The determination of 〈χ2(r)〉(n) proceeds along the same
lines, but it is more involved; the details can be found in the
Supplemental Material [58]. When the expression obtained
for 〈χ2(r)〉 is introduced in Eq. (10), the value of the average
energy takes eventually the form

〈E〉(n) = E∞ + (E2 − E1)αn + E3β
n

+ (E1 − E2 − E3 − E∞)γ n, (16)

where E1, E2, E3, and E∞ are constants that characterize the
starting ground state. The constants β and γ depend only on
N and N1,

β = 1 − 3N

N1N0
, γ = 1 − 4N

N1N0

(
1 − 2

N

)
, (17)

and α has the same meaning as in Eq. (14).
The constants E1 and E∞ depend only on two-point

characteristics of the ground states. They are written as

E1 = 2
∑

r

χ̂2(r) (18)

and

E∞ =
∑

r

χ̂2(r) + 2

N

φ2(1 − φ)2

ωr

, (19)

where the sum is over all the distances that are used in the
definition of the energy. As a consequence of Eq. (16), E∞
is the value towards which 〈E〉(n) converges for large values
of n. Since the random walk is ergodic, any configuration

has the same probability of being visited in the long run.
Therefore, E∞ is the average energy calculated over the entire
configuration space, which we refer to hereafter simply as 〈E〉.

The main contribution to 〈E〉 is
∑

χ̂2, which is small for
disordered microstructures. This term vanishes in the extreme
case of a Poisson point process for which the only contribution
left is of order 1/N , according to Eq. (19). The shifting of the
average energy towards lower values with increasing disorder
is clear in Figs. 4 and 7.

The other two constants E2 and E3 in the expression of
〈E〉(n) depend on more than the two-point function of the
ground state. They are given by

E2 = 2

N

∑
r

2φ(1 − φ)

{
σ 2(r) − φ(1 − φ)

ωr

}

+ (1 − 2φ)2

ωr

χ̂ (r) (20)

and

E3 = 4

N

∑
r

(1 − 2φ)φ

{
σ 2

C(r) − σ 2(r) + 1

φ2
χ̂2(r)

}

− (1 − 2φ)2

ωr

χ̂ (r), (21)

where the functions σ 2(r) and σ 2
C(r) are defined as

σ 2(r) = 1

N

∑
s

{
1

ωr

∑
i

I (i)Dr (i,s)

}2

− φ2 (22)

and

σ 2
C(r) = 1

N1

∑
s

I (s)

{
1

ωr

∑
i

I (i)Dr (i,s)

}2

−
(

S2(r)

φ

)2

.

(23)

We postpone to Sec. IV the detailed discussion of the structural
meaning of σ 2(r) and σ 2

C(r). We should only mention here that
σ 2(r) can be expressed in terms of S2(r) and that it is therefore
common to all ground states (see the Supplemental Material
[58]). By contrast, σ 2

C(r) depends on three-point statistics and
may differ from one ground state to another.

The black lines in Fig. 7 have been obtained from Eq. (16)
with the constants E1–E∞ evaluated at the starting ground
state. The analysis captures the essential features of the random
walk, in particular the steepness of the 〈E〉(n) versus n curves.

An important quantity for the rest of the analysis is the
average energy of all configurations at Hamming distance
d = 1 from the ground state. Setting n = 1 in Eq. (16) and
neglecting terms of the order of N−3, we obtain

〈E〉(1) = 4N

N2
1 N0

∑
r

{
χ̂2(r) + φ2 σ 2(r) + (1 − 2φ)φ2 σ 2

C(r)
}
.

(24)

The first two contributions are global characteristics of the
configuration space, which depend only on S2(r) and are
therefore common to all ground states. By contrast, the
contribution from σ 2

C(r) may a priori differ significantly from
one ground state to another. We discuss this point in detail in
Sec. IV.
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FIG. 8. (Color online) Distribution of the Hamming distances to
the ground state, νn(d), for increasing number n of steps in the random
walk. The figure is for N = 1024 and N1 = 200, relevant to Fig. 7.

C. The energy profiles of individual basins

The average energies 〈E〉(n) visited after exactly n random
moves is strictly a property of the random walk, not only of
the energy landscape. The aim of the present section is to use
Eq. (16) to calculate the average energy of all microstructures
at a given Hamming distance d from a given ground state.

A random walk of length n can reach any microstructure at
Hamming distance d � n from the ground state. Let us call a
microstructure at distance d from the ground state a d state,
and let νn(d) be the fraction of all the random walks of length
n that end on a d state. The average energy E(d) of all d states
is related to 〈E〉(n) through

〈E〉(n) =
n∑

d=0

νn(d)E(d). (25)

If the values of νn(d) were known, this relation could in
principle be inverted to estimate E(d) starting from Eq. (16).

The distribution νn(d) can be obtained by noticing that
the random walk is a Markov process, and by calculating
the transition probabilities between various d states. In real
space, the Hamming distance is the minimum number of pixel
displacements that is necessary to make the state identical to
the ground state. Therefore, in an i state, the black phase is
identical to the ground state but for i holes, and the white phase
is identical to the ground state but for i extra pixels. Starting

from an i state at step n, there are i2 ways to reach an (i − 1)
state at step n + 1. These correspond to the number of different
ways to take one of the i extra pixels and place it into one of
the i holes. The transition probability is therefore

pi→(i−1) = i2/(N0N1), (26)

where the denominator is the total number of possible moves.
There are i(N − 2i) different ways to reach another i state.
These correspond to the i(N1 − i) different ways of moving
the holes within the black phase, plus the i(N0 − i) different
ways of moving the extra pixels within the white phase. The
transition probability is therefore

pi→i = i(N − 2i)/(N0N1). (27)

Finally, there are (N0 − i)(N1 − i) different ways of reaching
an (i + 1) state, which correspond to the different ways of
taking a black pixel and putting it in the white phase. This
leads to

pi→(i+1) = (N0 − i)(N1 − i)/(N0N1). (28)

The three transition probabilities add up to 1, which proves
that all possibilities have been considered.

The enumerated probabilities define a tridiagonal transition
matrix A of size (N1 + 1) × (N1 + 1), with elements A(i,j ) =
pj→i . The explicit form of A is given in the Supplemental
Material [58]. Writing the values νn(d) in a vector form as
νn = [νn(0),νn(1), . . . ,νn(N1)]T enables us to write ν n+1 =
Aνn. The general solution is therefore

ν n = Anν0, (29)

where ν0 = [1, 0, . . . ,0]T is the trivial distribution of Ham-
ming distances in the ground state.

The particular evolution of νn(d) for N = 1024 and N1 =
200 is shown in Fig. 8. These values are relevant to Fig. 7.
For small values of n, the distribution is centered on the value
d = n. For large values of n, however, νn(d) converges towards
an equilibrium distribution. It is useful to note that although all
states are accessible to the random walk after n = N1 moves,
the energy 〈E〉(n) continues to changes for larger values of n

(see Fig. 7) because the convergence of νn(d) is asymptotic.
Using the known values of νn(d) and of 〈E〉(n), Eq. (25) can

be inverted for n = 1,2, . . . ,N1, yielding the values of E(d).
The procedure is illustrated in Fig. 9 for the small-system-
size configurations of Fig. 2. The results are plotted in the
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FIG. 9. (Color online) Energy profiles of the microstructures shown in Fig. 2. From left to right: A, B, C1 (◦) and C2 (+), D1 (◦) and D2

(+), E1 (◦) and E2 (+). Note that the profiles of D1 and D2, as well as E1 and E2 are identical. The solid line is the approximate profile,
common to all ground states, calculated from Ŝ2(r) alone using Eq. (36).
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FIG. 10. (Color online) From left to right: Energy profiles of the single disk, the hard disks, and the Poisson point process of Fig. 4. The
symbols (◦) are the exact values and the solid lines are the approximate profiles, common to all ground states, calculated from Ŝ2(r) alone
using Eq. (36). The exact values are plotted in insets on a logarithmic scale, together with the profiles of equivalent systems of larger sizes,
namely, with N = 32 × 32 (top) and N = 64 × 64 (bottom). The microstructures used for the N = 32 × 32 profiles are those of Fig. 1. The
approximate and exact profiles are indistinguishable on the scale of the insets.

normalized form E(d)/〈E〉, which we refer to as the energy
profiles.

The energy profiles describe quantitatively the average
energy landscape surrounding any particular ground state.
They are all initially increasing curves that start from 0 and
reach values close to 1. The average energy for d = 1 is equal
to 〈E〉(1), as calculated from Eq. (24). For large Hamming
distances the energy decreases again because microstructures
with large d can be thought of as negative imprints of the
ground state: for d = N1 the points that were occupied by
black pixels in the ground state are all occupied by white
pixels.

Figure 10 shows the energy profiles of the single disk, the
hard disks, and the Poisson point process of Fig. 4. When
plotted on logarithmic scales (insets), the profiles are seen to
satisfy a power law of the type

E(d) = E(1)dδ (30)

for small values of d. When the resolution is increased—i.e.,
increasing N from 82 to N = 322 and N = 642 while keeping
N1/N constant—the profiles are shifted vertically (insets) but
the exponent of the power law persists. In the case of the
reconstruction of the single disk, the exponent δ is close to
2 (≈1.97), and for the reconstruction of the Poisson point
process the exponent is close to 1 (≈0.92). The energy profile
of the hard disks is not a pure power law: the exponent is that
of a single disk for large Hamming distances and that of a
Poisson point process for shorter distances.

The different exponents δ for the Poisson point process and
for the single disk hint at a qualitative difference that can be
understood with the hole and extra pixel interpretation of the
Hamming distance d. In the case of the Poisson point process,
the energy is proportional to d. This means that any hole added
to the ground state contributes additively to the energy, which
points to the absence of effective pixel-pixel interaction energy.
By contrast, the quadratic behavior for the single disk points
to a collective contribution of the pixels to the overall energy,
which can be considered as the signature of a structure.

IV. ENERGY ROUGHNESS AS A PROXY FOR
GROUND-STATE DEGENERACY

When comparing the energy profiles in Figs. 9 and 10 with
the densities of states in Figs. 3 and 4, a striking correlation
appears between the sizes of the basins and the ground-state
degeneracy �0. We observe that the smaller the basin, the more
degenerate the reconstruction. This observation is consistent
with the one that large ground-state degeneracies are generally
associated with rough energy landscapes [59,60].

However, a major difference between the energy profiles
and the ground-state degeneracy is that the latter is a global
characteristic of the reconstruction problem but the former
are specific to given ground states. For example, in the case
of configuration C of Fig. 2, the ground states C1 (the kite)
and C2 (the trapezoid) have slightly different energy profiles
(Fig. 9). The main purpose of the present section is to provide
an approximation for the energy profile, common to all ground
states, which can be calculated from Ŝ2(r) alone.

To understand how the energy profiles depend on the
particular ground state, it is necessary to analyze the structural
meaning of the functions σ 2(r) and σ 2

C(r) defined by Eqs. (22)
and (23). We show in the Supplemental Material [58] that
σ 2(r) can be expressed in terms of the two-point function χ (r)
as

σ 2(r) =
∑
l�2r

v(r,l)ωlχ (l), (31)

where v(r,l) is a characteristic of the grid and of the boundary
conditions. By definition, all ground states have identical two-
point statistics. The contribution of σ 2(r) to the energy profile
is therefore common to all ground states. In contrast, it results
from Eq. (23) that σ 2

C(r) is a sum of terms of the type

I (s)I (i)I (j )Dr (s,i)Dr (s,j ), (32)

which incorporate three-point statistics. Accordingly, the con-
tribution of σ 2

C(r) to the energy profile may differ significantly
from one ground state to another.
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As a consequence of Eq. (32), the pixel configurations that
contribute to σ 2

C(r) are isosceles triangles with apex s and side
length r . In the case of configuration C of Fig. 2, the kite
(C1) has two such triangles, one with r = 1 and the other with
r = √

5. On the contrary there is no isosceles triangle in the
trapezoid (C2). It therefore results from Eq. (24) that 〈E〉(1) is
larger for C1 than for C2, in agreement with Fig. 9.

The energy profiles of D1 and D2 are identical although
these two ground states are different. This originates
in the fact that in both ground states, there is an isosceles
triangle of side r = 2 and another one of side r = √

10. The
same explanation applies to E1 and E2. In both ground states
there is a single isosceles triangle with r = √

5.
Despite these differences between σ 2(r) and σ 2

C(r), the two
functions have a strong similarity which can be put in evidence
by the following probabilistic interpretation. Consider the set
of all pixels at distance r from a given pixel s, which we refer
to as the ring centered on s. The fraction of black pixels in the
ring can be written as

ϕr = 1

ωr

N∑
i=1

I (i)Dr (i,s). (33)

When s is chosen randomly among all pixels (black and white)
ϕr is a random variable having average value φ. Equation (22)
shows that σ 2(r) is the variance of ϕr . The function σ 2(r) can
therefore be thought of as a generalized coarseness [61].

From this probabilistic perspective, the meaning of σ 2
C(r)

is equivalent to σ 2(r), but with the central pixel s not being
distributed randomly over the entire space but only over the
black pixels. In this case, the average of ϕr is the conditional
probability that a pixel of the ring is black, given that the
central pixel is black too, i.e., S2(r)/φ. From Eq. (23), one
sees that σ 2

C(r) is the variance of ϕr when the central pixel s is
randomly distributed over the black phase. The function σ 2

C(r)
can therefore be thought of as a conditional coarseness.

For small radii r , the values taken by I (i) on the ring are
highly correlated with the value in the center, which implies
σ 2

C(r → 0) = 0. For large radii, the values on the ring and in
the center are not correlated at all and therefore σ 2

C(r) � σ 2(r).
An example of σ 2(r) and σ 2

C(r) calculated on the realization
of a hard-disk system is given in Fig. 11.

The similarity of the probabilistic interpretations of σ 2
C(r)

and of σ 2(r), and their strict mathematical equality for large
values of r , suggest that it should be possible to find an
approximation for σ 2

C(r) in terms of the two-point correlation
function only. This would enable us to estimate a single
approximate energy profile that would depend only on Ŝ2(r).
That profile would therefore be common to all ground states
of a given reconstruction problem.

To find such an approximation, we observe that the terms
between braces in the definitions of σ 2

C(r) and σ 2(r) are
identical and that they are all positive [see Eqs. (22) and (23)].
However, there are fewer terms in Eq. (23) because I (s) can
be equal to 0. One has therefore

N1

(
σ 2

C(r) + S2
2 (r)

φ2

)
� N (σ 2(r) + φ2), (34)
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FIG. 11. (Color online) Functions σ 2(r) (top) and σ 2
C(r) (bottom)

of a hard-disk microstructure. The inset of the bottom graph shows
σ 2

C(r) and its upper bound σ 2
U (r). The dashed red line is the

approximation σ̃ 2
C(r) obtained through Eq. (36).

which leads to the following upper bound for σ 2
C(r):

σ 2
C(r) � σ 2

U (r) = 1

φ
σ 2(r) + φ − S2

2 (r)

φ2
, (35)

which depends only on two-point statistics.
The inset of Fig. 11 compares σ 2

C(r) to σ 2
U (r) in the

particular case of a hard-disk microstructure. The upper bound
σ 2

U (r) is a good approximation of σ 2
C(r) only for very small r .

We therefore propose the following approximation for σ 2
C(r):

σ̃ 2
C(r) =

(
1

σ 2
U (r)

+ 1

σ 2(r)

)−1

, (36)

which is practically equal to σ 2(r) for large r , as it should be.
Figure 11 shows that σ̃ 2

C(r) is a fair approximation of σ 2
C(r) at

all radii.
Using σ̃ 2

C(r) in place of σ 2
C(r) enables us to calculate a single

energy profile, based on Ŝ2(r) alone. The red curves in Figs. 9
and 10 have been calculated in that way: σ 2(r) was calculated
rigorously from the target Ŝ2(r) through Eq. (31), and σ 2

C(r)
was approximated by Eq. (36). In the case of the larger
microstructure shown in the insets of Fig. 10, the approximate
profiles are indistinguishable from the exact profiles on the
scale of the figure.

Using Eq. (36) it is possible to estimate a single metric to
characterize globally the roughness of the energy landscape.
We propose the ratio

Ẽ(1)/〈E〉, (37)

where the tilde highlights the fact that Ẽ(1) is estimated
through the approximation σ̃ 2

C(r). The quantity Ẽ(1) is the
average energy of all microstructures at distance d = 1 from
any ground state. Because all ground states have zero energy,
Ẽ(1) can be thought of as a Laplacian in configuration space
C. The ratio Ẽ(1)/〈E〉 is therefore a dimensionless measure of
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FIG. 12. (Color online) Relation between ground-state degen-
eracy �0/�tot and roughness of the energy landscape Ẽ(1)/〈E〉
calculated from S2(r) alone. The various microstructures are disks of
different sizes (•), realizations of Poisson point processes of various
densities (�), hard-disk microstructures (×), and the configurations
of Fig. 2 with N1 = 4 (�), as well as a configuration with N1 = 2
(∗). The black line is a guide to the eye; the insets are sketches
of archetypical energy landscapes for large and small values of
Ẽ(1)/〈E〉.

the total curvature of the energy surface in the vicinity of any
ground state. It has to be stressed that Ẽ(1)/〈E〉 is calculated
from Ŝ2(r) alone, and that it is therefore not specific to any
particular ground state.

Figure 12 shows the quantitative relation between Ẽ(1)/〈E〉
and the normalized ground-state degeneracy �0/�tot for a
variety of microstructures defined on an 8 × 8 grid. The
microstructures used for the figure are available in the Sup-
plemental Material [58]: they comprise both nondegenerate
disklike objects and highly degenerate realizations of Poisson
point processes. The ground-state degeneracy of the latter was
estimated via the MC algorithm. The quantity �0/�tot is found
to be highly correlated with Ẽ(1)/E∞ over more than 14 orders
of magnitude.

When passing from small to large values of Ẽ(1)/〈E〉, the
energy landscape changes qualitatively in the way suggested
by the insets of Fig. 12. For low values of Ẽ(1)/〈E〉, the
energy landscape has an overall funnel structure, with low
energy barriers, which makes it well suited for optimization
problems. By contrast, for large values of Ẽ(1)/〈E〉, the
landscape is very rough with a large ground-state degeneracy.
It is, however, interesting to note that the rightmost point in
Fig. 12 is obtained for a system with N1 = 2, having thus only
a trivial degeneracy. The corresponding energy landscape is
extremely rough because any possible energy can be found at
a Hamming distance as short as d = 1 from the ground state,
but the total number of configurations �tot is also extremely
small.

The data referred to as disks in Fig. 12 are a collection of
nondegenerate microstructures with increasing values of N1.
When increasing N1, the roughness Ẽ(1)/〈E〉 decreases but the
degeneracy remains equal to its trivial translation contribution
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FIG. 13. Relation between the information content �IS2 of the
two-point correlation function and the roughness metric Ẽ(1)/〈E〉.
The relation was obtained from disks of increasing sizes N1 defined
on grids of size N = 8 × 8 (•), 16 × 16 (+), 32 × 32 (�), 64 × 64
(�), and 128 × 128 (∗). The inset shows the data on logarithmic
scales. The solid line is Eq. (41) obtained by least-squares fit.

�0 = N . It is noteworthy that the values of �0/�tot of these
nondegenerate microstructures span the same curve as the
realizations of Poisson point processes, for which �0 has a
huge nontrivial contribution.

The microstructures considered in Fig. 12 were limited to
8 × 8 grids, which size limit is imposed by the convergence of
the MC algorithm. However, the fact that the �0/�tot-versus-
Ẽ(1)/〈E〉 curve does not discriminate trivial from nontrivial
degeneracy should not be limited to small microstructures.
This assumption enables us to extend the curve to larger
microstructures by using disks of increasing sizes N1, on grids
with increasing sizes N , for which the degeneracy is known to
be exactly �0 = N . This was done in Fig. 13. The degeneracy
is plotted in the form of �IS2 = log2(�tot/�0) for reasons that
will be explained in the next section. The inset of the figure
shows that disks of all sizes and on all grids span a single curve
which obeys approximately a power law.

V. DEGENERACY ANALYSIS USING AN
INFORMATION-THEORETIC FORMULATION

The degeneracy �0 can be analyzed in terms of the
information content associated with a given two-point function
S2(r). Indeed, if a reconstruction problem is nondegenerate, the
two-point correlation function is a complete characterization
of the microstructure. By contrast, in the case of a large
degeneracy the correlation function contains a relatively small
amount of microstructural information.

This idea can be made quantitative by borrowing con-
cepts from information theory [62,63]. In that context, a
given microstructure is considered to be the outcome of
a random process. More specifically, if nothing is known
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other than the total number of pixels N , then specifying a
given microstructure is equivalent to drawing it out of the
complete configuration space. Any microstructure is therefore
an event having probability p = 1/2N . The self-information
(or so-called surprisal) associated with such an event is

I = − log2(p) = N. (38)

The use of a base-2 logarithm ensures that the self-information
is expressed in units of bits. The self-information can be used
as a quantitative measure for the information content of the
realization of an event. In this particular case, the value is
I = N bits, i.e., 1 bit per pixel, which is quite consistent.

If the number of black pixels N1 is known, a microstructure
is no longer a draw out of 2N , but rather out of �tot = ( N

N1
).

This implies that the self-information is reduced by a quantity

�IS1 = N − log2(�tot), (39)

which can be thought of as the amount of information
contained in specifying the value of N1, compared to knowing
merely the system size. We refer to �IS1 as the information
content of the one-point statistics. The quantity �IS1 depends
on the particular value of N1. It is equal to N for N1 = 0 and for
N1 = N . In both cases specifying N1 is a complete description
of the microstructure, since in those cases the system is
either completely black or completely white. By contrast,
�IS1 is minimum for N1 = N/2, because this particular value
maximizes �tot.

The same reasoning can be applied to quantify the infor-
mation content of S2(r). Once S2(r) is given, a particular
microstructure is drawn out of �0 possibilities, and no longer
�tot. This suggests defining the quantity

�IS2 = log2(�tot) − log2(�0) (40)

to measure the information content of S2(r), in addition to
knowing N1.

Note that the information content of the one-point and
two-point statistics can be understood in terms of config-
urational entropies corresponding to different definitions of
the macrostate of the system. In the case of the one-point
information, the macrostate is specified via the value of N1,
which results in an entropy log2(�tot). Similarly, if S2(r) is
used to define the macrostate, the entropy becomes log2(�0).
The information content �IS2 is equal to the entropy reduction
that results from incorporating S2(r) in the definition of the
macrostate of the system.

The analysis of Sec. IV suggests that �IS2 can be accurately
calculated from Ẽ(1)/〈E〉 alone. This is the significance of
Fig. 13. The inset of the figure shows that the dependency is a
power law of the type

�IS2[bits] � 11.2

(
Ẽ(1)

〈E〉
)−0.51

, (41)

where the numerical coefficients have been obtained by a
least-squares fit. It has to be stressed here that the roughness
metric Ẽ(1)/〈E〉 is calculated from S2(r) alone. Therefore,
Eq. (41) provides a practical means to estimate �IS2 in any
experimental context where the only information about the
system is its correlation function S2(r).

TABLE II. Information-theoretic analysis of the reconstructions
of Figs. 1 and 5, with N and N1 the total number of pixels and
number of black pixels; �ĨS1 the fractional information content of the
one-point statistics; Ẽ(1)/〈E〉 the roughness metric, calculated from
Ŝ2(r) alone; �ĨS2 the fractional information content of the two-point
statistics; and �ĨS1 + �ĨS2 the total information available for the
reconstruction.

Microstructure N N1 �ĨS1 Ẽ(1)/〈E〉 �ĨS2 �ĨS1 + �ĨS2

Single disk 1024 200 0.29 2.27 × 10−4 0.81 1.10
Hard disks 1024 200 0.29 6.38 × 10−4 0.48 0.77
Poisson point 1024 200 0.29 1.33 × 10−2 0.10 0.39

process
Crystal 16384 3000 0.31 1.79 × 10−6 0.61 0.93
Polycrystal 1 16384 3000 0.31 6.33 × 10−6 0.32 0.63
Polycrystal 2 16384 3000 0.31 1.36 × 10−5 0.22 0.53

For a reconstruction to be accurate, the total information
available in the form of one-point and two-point statistics, has
to be N bits. Therefore, the utility of �IS1 and �IS2 is best il-
lustrated by normalizing them by N and defining the fractional
information contents �ĨS1 = �IS1/N and �ĨS2 = �IS2/N ,
which take values between 0 and 1. A reconstruction is
accurate whenever the sum �ĨS1 + �ĨS2 is close to 1. Table II
analyzes the reconstruction examples of Figs. 1 and 5 along
these directions.

The three microstructures of Fig. 1 all have N1 = 200 black
pixels on a grid with a total of N = 1024 pixels. In this case,
one estimates through Eq. (39) that the one-point information is
�ĨS1 � 0.29. The two-point information �IS2 for the various
microstructures was calculated from the roughness metric
Ẽ(1)/〈E〉 through Eq. (41), and the corresponding values of
�ĨS2 are reported in Table II. In the case of the single disk,
the total information content of S1 and S2 is close to 1, which
means that a perfect reconstruction is possible. The fact that the
value is slightly larger than 1 results from the limited accuracy
of Eq. (41). In the case of the Poisson point process, the total
information available amounts to only 39% of the information
required for the reconstruction; the reconstruction is therefore
impossible.

The case of the hard disks is not so clear-cut: the recon-
struction captures many structural characteristics of the target
(Fig. 1) although only 77% of the information is available
(Table II). This seems to suggest that a fair reconstruction may
be possible with about 20% of missing structural information.

The information-theoretic analysis of the polycrystal re-
constructions of Fig. 5 proceeds in the same way. In the case
of the single crystal, 93% of the information is available
(see Table II), which is consistent with the good quality
of the reconstruction. For decreasing crystallite sizes, the
amount of information decreases. In the case of the smallest
crystallites, the amount of information is only about 50% and
the reconstruction is inaccurate as expected.

The consistency of the information analysis of the single-
disk reconstruction was expected because Fig. 13 and Eq. (41)
are based on disks of various sizes. The validity of Eq. (41)
for microstructures other than disks is established only for
very small systems, for which the MC algorithm could be
used (Fig. 12). The fact that the present analysis enables
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us to predict the nondegeneracy of the crystal reconstruction
strongly supports the generality of Eq. (41).

VI. DISCUSSION AND CONCLUSIONS

Throughout the paper, we have discussed several cases
of trivially and nontrivially degenerate microstructures. We
have argued that the geometrical features that contribute to
decreasing the nontrivial contribution to �0 are those that
lead to extremal values of S2(r) for given values of r . This
is notably the case for a single disk under periodic boundary
conditions, which is the microstructure that maximizes S2(r)
for sufficiently small r’s. The crystal configuration shown in
Fig. 5 is nondegenerate for similar reasons: Because of its
anisotropy, that microstructure achieves extremal values of
S2(r) for many different values of r . The opposite situation is
that of a Poisson point processes, for which S2(r) takes values
close to the average value φ2 for all r > 0. This leads to a
huge degeneracy (configurational entropy) because none of
the values of S2(r) is close to being extremal.

It is interesting to note that the single disk within a periodic
box can be thought of as a dilute distribution of disks in all
of Euclidean space when the infinite number of periodically
replicated cells are considered. In the case of impenetrable
disks at arbitrary density, it is noteworthy that S2(r) can be
exactly expressed in terms of a one-body or low-density term
(which contains the same shape and surface area information as
in the dilute regime) and a single higher-order two-body term
involving pair statistics [7,64]. It is therefore the latter term
that is responsible for the degeneracy of such configurations
for arbitrary densities.

The trivial contribution to the degeneracy �0 depends
on the particular rotational symmetry and chirality of the
microstructure, but it is always of the order of total number of
pixels in the grid N . By contrast, the nontrivial contribution to
the degeneracy can be significantly larger. The Monte Carlo
estimation of �0 shows that even a modestly sized 8 × 8 Pois-
son point process can have a degeneracy as large as �0 ≈ 107

(see Fig. 4). This value is expected to increase exponentially
with the size of the system because any possible S2-preserving
pixel displacement contributes multiplicatively to �0.

In order to quantitatively address the question of the de-
generacy corresponding to any specified correlation function,
we have mapped it to the determination of a ground-state
degeneracy. This mapping led us to two major results. First,
we now can calculate the density of states for reconstruction
problems via a Monte Carlo algorithm, and in particular we
can determine the values of �0 for a few benchmark systems.
Second, we built on the general observation throughout physics
that large ground-state degeneracies are generally associated
with rough energy landscapes, which enabled us to use
the roughness of the energy landscape as a proxy for the
microstructural degeneracy.

A natural metric for the roughness of the energy landscape
is the total curvature of the energy surface, evaluated at the
ground states. Using a random walk in configuration space
(see Fig. 7), we derived an analytic expression for the total
energy-surface curvature in the form of Ẽ(1)/〈E〉, which can
be calculated in terms of S2(r) alone. The Monte Carlo analysis
confirms that Ẽ(1)/〈E〉 is indeed highly correlated with the

degeneracy of a reconstruction problem, independently of
the type of microstructure considered (Fig. 12). It has to
be noted that the roughness metric is consistent with the
intuitive analysis of degeneracy in terms of extremal values
of S2(r). Indeed, the main contribution to the denominator 〈E〉
is

∑
χ2(r), so that any value of S2(r) larger or smaller than the

asymptotic value φ2 contributes to decreasing the roughness
metric, and hence the degeneracy.

A counterintuitive result of the present study is that the
distinction between trivial and nontrivial degeneracy is irrel-
evant in configuration space C. In particular, the quantitative
relationship found between �0 and the roughness metric does
not discriminate the two types of degeneracy. This enabled us
to use trivially degenerate microstructures to generate a single
calibration relation for �0 as a function of Ẽ(1)/〈E〉. That
relation applies to a large variety of microstructures of sizes
much larger than those analyzable by the Monte Carlo method
(see Fig. 13).

We should point out that although the examples discussed
in the present work are all two-dimensional microstructures,
the same methodology can be applied in any space dimension.
It is indeed noteworthy that Eq. (24) and the approximation
Eq. (36) are valid in any space dimension. As a consequence,
the roughness metric of any higher-dimensional microstructure
can be calculated easily from its correlation function S2(r)
alone. Moreover, the observation that we make that the relation
between the roughness metric and the ground-state degeneracy
does not discriminate trivial from nontrivial degeneracy is
also expected to hold in any space dimension. Therefore,
higher-dimensional trivially degenerate microstructures (e.g.,
hyperspheres) can be used to produce a relation equivalent to
Eq. (41) or Fig. 13 in any space dimension.

It is also noteworthy that our analytical results do not
assume Euclidean space: the only restriction is that

∑
j Dr (i,j )

should be independent of i, where Dr (i,j ) is the operator used
to define S2(r) through Eq. (3). Therefore, the mathematical
expression of the roughness metric is valid in hyperbolic and
spherical spaces as well as in any dimension. However, the
relationship between the degeneracy (configurational entropy)
and the roughness metric is expected to be space and dimension
dependent.

The use of information-theoretic concepts allows our
methods to be easily applied in practice. As mentioned in
the Introduction, two-point correlation functions are often the
only data available experimentally for in situ studies with a
nanometer resolution, notably through small-angle scattering
measurements [16–18]. The question of the structural ambigu-
ity of small-angle scattering patterns is an old one [19,31,65],
but the recent development of very intense x-ray sources
[66] has ignited a very lively debate about the possibility
of reconstructing nanometer-scale objects from scattering
patterns [67]. Our analysis provides a very general approach
to address this type of question: An accurate reconstruction
is possible whenever the amount of information �ĨS1 + �ĨS2

is close to 1. The examples that we have discussed suggest
that a relatively accurate reconstruction is possible with up to
20% missing information, but it is premature to formulate any
general rule.

It has to be stressed that, although the present work is based
on the reconstruction of microstructures defined on a grid with
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exact distances, the results apply unchanged to the discrete
reconstruction of microstructures starting from experimental
(i.e., continuous) correlation functions. Correlation functions
of the type of the monocrystal (Fig. 5) are unrealistic in an
experimental context. However, the general relation between
Ẽ(1)/〈E〉 and �IS2 still holds. The only difference is that
experimental correlation functions of disordered systems are
generally of the polycrystal type, with very small crystallites.
Except in some exceptional cases, it is therefore expected
that experimental correlation functions with no orientation
information should be highly degenerate.

The domain of applications of our results is not limited
to scattering. Other applications can notably be found in the
field of computer vision for texture recognition. A texture with
low degeneracy �0 can in principle be discriminated robustly
based on two-point statistics alone, which would make slower
three-point characterizations unnecessary [68].

Besides applications, information-theoretic concepts are
also useful conceptually. It is very natural that a reconstruction
should be possible whenever the information content of the
available data is equal to the amount of information required,
i.e., N bits where N is the total number of pixels. In the
cases we considered, the information came in the form of
one-point statistics �IS1 and of two-point statistics �IS2.
However, the approach could be generalized naturally to
higher-order statistics [6,69–71]. Quite generally, a successful
reconstruction would require all correlations to be considered
up to the mth order, with m satisfying

m∑
n=1

�ISn ≈ N, (42)

where �ISn is the information contained in the n-point
correlation function Sn in addition to Sn−1.

There is some evidence supporting the view that S3 does
not contain significant information in addition to S2 [22,38].
In the present context this suggests that the series in Eq. (42)
converges slowly. The approach could be further generalized to
other types of statistical descriptors including lineal statistics
[72,73], pore-size functions [3,7], and cluster correlation
functions [38,64].

We stress that the present work has numerous ramifications
in materials sciences and beyond. For instance, an important
question concerns the realizability of two-point correlation
functions [74,75]. It would be interesting to explore whether
new necessary conditions for the realizability of S2(r) can be
obtained by using the fact that the information content (in bits)
cannot exceed the total number of pixels in the microstructure.

Last but not least, other applications can be found in
physics. Indeed, the Hamiltonian of any system with pairwise
additive energy can be written as

H =
∑

r

v(r)S2(r), (43)

where v(r) is the pair interaction potential. It results from
Eq. (43) that systems with identical S2(r) necessarily have the
same energy. Therefore the degeneracy �0 calculated from
S2(r) is a lower bound for the physical ground-state degeneracy
of any system with pairwise interaction energy. This includes
systems such as frustrated Ising models for which the ground-
state degeneracy is not trivial [76]. Another fascinating field
of application is that of quasicrystalline microstructures [77],
the degeneracy of which could be analyzed with the general
results obtained in the present study.

From a methodological point of view, the general approach
we have developed may be valuable in the manifold fields
where complex energy landscapes have to be characterized.
These include protein folding [78], complex chemical reac-
tions [59], phase equilibria in disordered porous materials
[79,80], and glass transitions [60]. We hope to investigate some
of these aspects in future work.
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