New bounds on the elastic moduli of suspensions of spheres
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We derive rigorous three-point upper and lower bounds on the effective bulk and shear moduli of
a two-phase material composed of equisized spheres randomly distributed throughout a matrix. Our
approach is analogous to previously derived three-point cluster bounds on the effective conductivity
of suspensions of spheres. Our bounds on the effective elastic moduli are then compared to other
known three-point bounds for statistically homogeneous and isotropic random materials. For the
case of totally impenetrable spheres, the bulk modulus bounds are shown to be equivalent to the
Beran—Molyneux bounds, and the shear modulus bounds are compared to the McCoy and Milton—
Phan-Thien bounds. For the case of fully penetrable spheres, our bounds are shown to be simple
analytical expressions, in contrast to the numerical quadratures required to evaluate the other
three-point bounds. © 1995 American Institute of Physics.

l. INTRODUCTION

The problem of determining the effective properties of
composite media has attracted the attention of some of the
luminaries of science!™® and continues to be the focus of
intense research.*"'® The effective property of a composite
generally depends on the phase properties, phase volume
fractions, and the microstructure through an infinite set of
correlation functions that statistically characterize it. The ma-
jor problem is that this set of functions is typically unknown
either experimentally or theoretically. Therefore, one usually
resorts to obtaining a solution for an idealized geometry
(e.g., periodic arrays), finding an approximate solution, or
obtaining rigorous bounds on the effective properties for the
actual microstructure given limited but nontrivial informa-
tion about it.*"!* The latter approach has been found to be
fruitful because the bounds can yield useful estimates of the
effective properties, even when the reciproz:al bound di-
verges from it in the strong-contrast limit. In the case of the

elastic moduli of isotropic two-phase composites, the subject .

of the present paper, two-point*> and three-point
bounds”®!%!! have been derived. By n-point bounds we
mean bounds that incorporate up to n-point correlation func-
tion information. '

In this work we will derive rigorous three-point upper
and lower bounds on the effective bulk modulus «, and ef-
fective shear modulus . of a class of two-phase composites,
namely, suspensions of identical spheres that interact with
one another with an arbitrary potential. These are referred to
as “cluster bounds™ since they represent the analog of pre-
viously obtained cluster bounds for the effective conductivity
of suspensions.'? Our bounds are evaluated for two extreme
situations: totally impenetrable (nonoverlapping) spheres and
fully penetrable spheres.

In the case of totally impenetrable spheres, our bounds
are evaluated in terms of the known microstructural param-
eters {, and 7,. We find that the cluster bounds on the
effective bulk modulus are equal to the Beran—Molyneux
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bounds (cf. the cluster bounds on effective conductivity14).

Also, we show that the cluster bounds may or may not be
sharper than the McCoy bounds, depending on the volume
fraction of inclusions and the elastic moduli of the two
phases.

. For fully penetrable spheres (i.e., spatially uncorrelated
spheres), our cluster bounds can be evaluated exactly analyti-
cally, in contrast to previous bounds which require numerical
quadraturr::s.lS'18 This is an interesting model because for
sphere volume fractions ¢, in the interval [0.3,0.97] the me-
dium is bicontinuous; i.e., both phases are connected. Thus, a
system of randomly overlapping spheres.is useful model of
consolidated media, such as sandstones and sintered
materials. ‘

In Section II we state the variational principles for the
effective elastic moduli from which the cluster bounds arise.
In Section III we describe the class of model microstructures
that will be studied and the associated relevant statistical
correlation functions. In Sections IV and V we explicitly
calculate the ensemble averages involved in the cluster
bounds on the effective bulk and shear modulus, respec-
tively. In Section VI we simplify these two pairs of bounds
for the special case of totally impenetrable spheres and com-
pare our results with other bounds on the effective elastic
moduli. The same is done for randomly overlapping spheres
in Section VII.

IL. VARIATIONAL PRINCIPLES
A. Principle of minimum potentialg energy

Consider a trial strain field e(r) at the field point r, i.e.,
a field that can be written as a symmetrized gradient of dis-
placements, or

1 aﬁj+aﬁi -
€=7\55 T o) @D

We require that the ensemble average (€) is equal to the
average of the actual strain field (€). Let

U(&)= 1 (Cijuéijén) (2.2)
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be the potential energy of the system for the trial strain field,
where Cj,(r) is the local stiffness tensor defined by

(2.3)

and the Einstein summation convention is employed. Then.
among all trial strain fields, the field that satisfies the equa-
tions '

7= Ciju€ur

Cijr€r=0 (2.4)

o"xj

is the one that uniquely minimizes U(&).°
For isotropic systems, this implies that

K €) k) T 21 (€0 &) S (k&) + 2<ﬂ§ijgij>(,2 5

where «, is the effective bulk modulus, u, the effective
shear modulus, and

Eij=€ij“ %‘ fkk5ij i (2.6)
is the deviatoric component of the strain field e.

We now take the trial strain field to be of the form

e=(e)+\é€, (2.7)

where A is a parameter and €' is a perturbation term chosen
so that € satisfies the requirements of a trial strain field.
Setting (€)=1, the unit dyadic, and minimizing over \ yields
the following rigorous upper bound on the effective bulk
modulus:

K < (K)— {xei)” 28)

¢ (Kéz{iflik>+2<ﬂg;j§;j ) o

Likewise, setting (e;;) = 8;18;,~ 8;,8;, and minimizing

over A yields an upper bound on the effective shear modulus:
(u(ej—€ex))?

~p oy

(K€ €p) +2( 1€ E];

Mes<#> - (29)

B. Principle of minimum complementary energy

We now consider trial stress fields 7(r) that are symmet-
ric and satisfy the equilibrium equations

Ty

»
6’xj»

(2.10)

where (7) is required to equal the average of the actual stress
field {7). Let

T(D= 3 {SiuTTu) (2.11)
where S;;;; is the compliance tensor defined by
eij=S,»jk,Tk, . (2.12)

Then among all trial stress fields, the field that is derivable
from a displacement field
1 (aﬁj N 5&,—)

';’i:cijkzg W, d_x] (2.13)

]

is the one that uniquely minimizes T(%).°
For isotropic systems, this implies that
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=1
e

, -
Be .. I ..
5 (Tkk>2+_;——<7'ij><7ij>“<‘§'<’< T

+ 5w TR, (2.14)
where 7 is the deviatoric component of the stress field. As
before, we now take

F=(D+A7, (2.15)

where \ is a parameter and 7' is a perturbation term chosen
so that 7 satisfies the requirements of a trial stress field.
Setting (€)=1, so.that (7)=3«;I, and minimizing over A
yields a lower bound on the effective bulk modulus:

' AL

%(K Ty

K;1$~<le>‘“

- - T (2.16)
s T+ 3 (e lTijTij)

Likewise, setting (e€;)=8;18;;— 8502, so that
{71y =2u1(8;18;1— 8;28,2), and minimizing over \ yields a
lower bound on the effective shear modulus:

= )?
L - L — Lt
$ (e T+ 5 ITz!sz{j
Choices for € and 7/ must be made to obtain lower and
upper bounds on the effective elastic moduli. This is shown
in Sections IV and V. Before undertaking this, however, we
first mathematically describe the model microstructure of the
composite material.

pols(uhy- (2.17)

Ill. MODEL SYSTEM AND MICROSTRUCUTURE
CHARACTERIZATION

We now consider systems of volume V with a matrix
phase (phase 1) with bulk and shear modulus «, &, re-
spectively, and N possibly overlapping spherical inclusions
(phase 2) of radius R with bulk and shear modulus x,,
Mo, respectivély. The ensembles are assumed to be statisti-
cally homogeneous and thus we ultimately take the “thermo-
dynamic limit” N,V—o such that the number density N/V
equals some fixed constant p. The volume fractions of ma-
trix and spheres are ¢, and ¢,, respectively. The centers
rV=r,,...,ry are randomly positioned and follow a known
density function Py(r"). Therefore, if F(r") is a given
many-body function, then the ensemble average of F is
given by

(F)=f f drVF(eV)P (),

where drV=dr;...dry.
The reduced n-particle probability density P,(r") is de-
fined by

(3.1)

P,,(r"):f ...jdr,,ﬂ...drNPN(rN).

This is the probability of observing molecule i in a volume
dr; about r; for i=1,...,n. Therefore, the probability of find-
ing any molecule in a volume dr; about r; for i=1,...,n is
given by

pn(rn):[N'/(N_n)']Pn(r”)

(3.2)

(3.3)
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This is called the generic n-particle probability density
function.

Subject to the conditions stated above, the potential of
interaction between the spheres is perfectly arbitrary. The
spheres may overlap to varying degrees; an example of such
an interpenetrable-sphere system is the penetrable-
concentric-shell (or cherry-pit) model.'®

Quantities that statistically describe the microstructure of
random heterogeneous materials are now defined; a fuller
development is given in Ref. 12. The number density p and
the reduced density 7 are given by

p= lim N/V (3.4)
N, Voo
and
4apR3 )
n=- 3 (3.5)

For partially penetrable spheres the inclusion volume frac-
tion ¢, can be related to the reduced density. For example,
for fully penetrable and totally impenetrable spheres
¢p=1—€e"7 and ¢,= 1, respectively. General expressions
which relate ¢, as a function of # for arbitrary A have been
obtained for the cherry-pit model.?

The distribution function associated with finding phase i
at r and a particular configuration of g=n—1 spheres at
positions r? is defined as

, N!
~{i) (. - (i)
GY(r;r?) (N—q)!f f dr, ...dey (e, e Py (rY),
(3.6)
where I (i)(r) is the characteristic function for phase i; i.e.,
1, rebD;
(i) - L) i
7(r) {O, otherwise, (3.7)

and D; is the region of space occupied by phase i. We call
fo)(r;r") the phase point/g-particle function for phase 7. It
is convenient to define another set of point/g-particle distri-
bution functions HY as follows:

HO(r;r9) =GV (r;r9) — Ggi)(r)pq(rq), (3.8)

so that H,(,i)—-»O as r moves away from ry N

In this paper, we are restricting our attention to en-
sembles of spheres which are statistically homogeneous and
isotropic. For such materials, these correlation functions are
only dependent on the relative positions of the n points.

For example, pi(r)=p, GP(r;r)=GP(x;) and

GP(r;r; 1) =GP (xy,%,,%,-%,),  where  x,=r—r;,
x;=|x;|, and X;=x;/x;. It is easily shown that

G¥(x)=p, x<R (3.9)
and

HP(x)=p¢p;, x<R. (3.10)

Finally, the radial distribution function g,(x) and the

total correlation function 2(x) are defined by
g2(x)=pa(x)/p* (3.11)
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and

h(x)=gy(x)—1. (3.12)
IV. GENERAL CLUSTER BOUNDS ON THE
EFFECTIVE BULK MODULUS

Torquato'? has obtained so-called cluster bounds on the
etfective conductivity of dispersions by employing trial
fields based upon the solution of the single-sphere boundary-
value problem. In this and the next section, we shall derive
analogous bounds on the effective elastic moduli using such
trial fields.

To obtain the cluster bounds on «,, we use Egs. (2.5)
and (2.11) and choose

N
€ (rr)=2, €*(Xi)—f dx;p(x)€*(x;) 4.1)
i=1
and
N
P =3 A- [ dp)P), @)
i=1
where
—CYI, xi<R,
e (x;)={ aR’ 4.
0 2;3—(3521&1'"1), x;>R, “3)
daul, x;<R,
*(x)=1 2amR> . 4.4
0 Lﬁ‘;—_(?’xixi_l), x>R, (*4)
x=r-r, x=[x]
and
CY=3(K2'_K1)/(3K2+4,U,1). (4.5)

These fields arise from the solution of the single-sphere
boundary value problem, which is described in Appendix A.

The ensembled averaged quantities of Egs. (2.8) and
(2.16) are similar to those derived in Ref. 12. After some
algebraic manipulation, which is outlined in Appendix B,
they are given by

(reiy=—12ma(k— k), 4.6)
(kefey=a?[A 1k, +B (K~ Ky)], 4.7)
</ng{jéfj>=a2[C1M1+Dl(ﬂ«z“M1)], (4.8)
(™) =2Baap (xy ' = k7 DI, 4.9)
(k7 rfrpy=16pfe® (A '+ By (k; = k7 D],
(4.10)
(™' FEy=4pid?[Ciuy 4Dy (puy =T D]
(4.11)
where
., 81
A1=<fii€kk>=977+5§3 71y, 4.12)
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277] 8177

By =(IPejep) = W14, (4.13)
C1—<~' €l ) 677+27’)7 15, (414)
B 1877R3 277%
Dy=(I"V& &)= +—prl7, (4.15)
R ~
1= f dr rPH®(r), (4.16)
0
R ” R \ 1
=f dr r“f dss“j du h(t), (4.17)
0 0 -1
R 2
=J dr r‘Gg_Z)(r), (4.18)
0
R R 1
f dr rlj ds slf du Q(r,s), 4.19)
0 -1
*dr (®ds
5—J f J du h(£)P,(u), (4.20)
= GP(r)
Ig= f dr ———, (4.21)
R

477 ¢1(K2 TKy 1)2

I;= JWdrfwdsf duQ(r,s)P,(u), (4.22)
an
Q(r,8)=GP(r,5,u)— pG2(r)— pGP(s) + p* 5.
(4.23)

In these equations, P,(u) is the Legendre polynomial of or-
der 2 [not to be confused with the reduced two-particle prob-
ability density function of Eq. (3.2)],

s
=, (4.24)
2rs
and
t=|r—s|. (4.25)

To summarize, using Egs. (2.8), (2.16), (3.10), and
(4.6)—(4.11), for an isotropic composite system consisting of
overlapping equi-sized spheres dispersed throughout a ma-
trix the effective bulk modulus is bounded by

97 1 (13— 1)?
Ke<(K)—

(<K—1>— 1 -1 1 -1
s[A k7 B =k D]+ [Cray +Dy(uy ' = u D]

where A, B;, C;, and D; are given by Egs. (4.12)—
(4.15).

V. GENERAL CLUSTER BOUNDS ON THE EFFECTIVE
SHEAR MODULUS

To obtain the cluster bounds on u,, we likewise use
Egs. (2.9) and (2.17) and again choose

€ (r;r")= E €°(x;)— J dx;p(x;)€*(x) (5.1)
i=t
and
N .
P =3 #)- [ dp)rx), 62
i=1
where for the strain perturbation field we instead take
E?j=cl(5i16ﬂ,_ 812852), T<R, 7(5~3)

while for r>R we take

op 5 dq
€= y)+p(r)(3x2—yH+ = FTal);

(5.4)

x(x*—
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Ak +Bi(ry— k1) +2[Crpg + Dy (pa— p1)]
(4.26)
and
-1
. (4.27)
I
i 5| OD (9p
s
1{dq aq
5(5 —Ey) (5.5)
[ dp dp 1 dg
€f3=6§°1=72‘(X“—y2)(—5£x+ o )+p(r))cz+2 72
(5.6)
dp . 9q
65.“z=— y(x2=y") +p(r)(x*=3y*)— — y—q(r),
dy
(5.7
1 ap r7p 1 dq
623=6§‘z=§(x2—y2)(azy o )—p(r)yz—g*é;y,
(5.8)
and
€% =¢9— 2(x* =y +p(r)(x*—y?), (5.9)
where
_ 502 3K1+[L1 C3
p(r)=—T+ P (5.10)
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2¢y 2ea
q(r)=——5+ P (5.11)
c1=6(r;+2u,)7, (5.12)
c,=—R°(3Kr;+p)y, (5.13)
c3=5R%u,y, (5.14)
and
— M
=9#1K1+6M;u'<]1+/;;1'%+12#1#2 ' (5.15)
For the stress perturbation field, we take
T*=[2C4[5i15j1—5i25j2], r<R, (5.16)
T G- fpu)endyt2u e, >R, '
where
Ca=po— pyF pac1=—p1(9x; +8u)y. (5.17)

As in the previous section, these perturbation fields also arise
from the solution of the single-sphere boundary value prob-
lem discussed in Appendix A.

As in the previous section, we now simplify the en-
semble averages of Eq. (2.9) and (2.17). We find that

(m(eny— €3)) =8mey(py~ pi)ly, (5.18)
(rejeny=Ask+By(ry— k), (5.19)
(nE€)=Couy+Do(py— py), (5.20)
(p~Hr = 1h))=16mcy(py ' — uy DI, (5.21)
(e~ lryTiy =Asky '+ B3(k;  — k1), (5.22)
(w7 T = Capy "+ Da(ug ' - ui ), (5.23)
where
486‘3 216C3
A2 5R6 77 SRG n ISv (5.24)
144¢2 216¢3
Bz 5R3 7][6 5R6 N/ 171 (5.25)
2
Cz 20203(3K1+ll«1)
+c§(27i<‘1‘+241<1,u,1 + 16;1,12)
7 60u1R® 7
9¢t  18c3(9KT+48k uy +92u2)
RS "2 35u7RS 5
72 5 A,
toRs T T3 (5.26)
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9C1

6c1 48
D,= R‘a;h‘*‘@‘“ls n+ R7—§I4

18c3(9k} + 48k py +92u%)
35“%R6p2 7

72 B
) 22 (5.27)

+ [N —
me In|7n 3

A3=9kiA,, (5.28)

B3=9«3B,, (5.29)

2,“1 20203/’«1(3K1+IL1)
5R®

|7

576c3(9 ki + 61y puq+8u) ,
35R® 5

Cs=|8c2+192

33+ 2umr+ 1?)
5RS

36

+ F C412+

288u?

As
tSRE Im) Uil (5.30)

and

36

24, 192
D3= "‘5?04]4

w355 Calst o Ig | g+
R°p 5R°p

57603(9 Kl +6K g+ S,uI)
35R%p?
33

3

288u7
7R6p2 [ll

(5.31)

In these equations /; through I, are given by Eqs. (4.16)—
(4.22),

Te3  2cy05(35,+
Is—J erm(r)( 2, 265( 1 “1)

iy r®

2 2 2
c3(27k1+ 24k py + 16u7)
+ .
05" : (5.32)
T [ 35¢2u?  10c,e 3K+
=f d"G;.Z)(")( §#1+ 2 3#«1(6 1+ )
r r
3c¢23k3 + 20y + 2y
n 3( 1 ,.4 1M1 T My )’ (5.33)
edr 3K+ ods
[lozf —3‘(7024'—1'-&(:3}"2) =
R’ M1
"';Kl'l‘/,l.l
X 702 —T—" J duh(t)P4(u) (5.34)

and
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°°dr 3K1+[L1 °°ds
I =I (7(: + ——,r?
n= ], = 2 Py 3 R 3

3K1+,LL] ] 1
X 7CZ+_"—C3S" f_lduQ(r,S)P4(u). (5.35)

231

In summary, using Egs. (2.9), (2.17), (3.10), and (5.18)—
(5.23) for an isotropic composite system consisting of over-

dcin’ gt (my ' — ')

lapping equi-sized spheres dispersed throughout a matrix, the
effective shear modulus is bounded by

43P Py~ p)?

pe= (u )

VI. CALCULATION OF BOUNDS FOR TOTALLY
IMPENETRABLE SPHERES

Beasley and Torquato’* showed that the three-point clus-
ter bounds on the effective conductivity obtained by
Torquato'? and the three-point perturbation bounds obtained
by Beran?' were in fact equivalent for systems of totally
impenetrable spheres. We now establish connections between
the three-point cluster bounds and three-point perturbation
bounds on the effective elastic moduli. We first compute the
two sets of bounds in Eq. (4.26), (4.27), (5.36), and (5.37)
for systems of totally impenetrable spheres. We will then
show that the bounds on «, are equivalent to the three-point
Beran—Molyneux bounds’ for this particular system. Also,
we compare the cluster bounds on u, to the three-point
bounds obtained by McCoy®*'’ and by Milton and
Phan-Thien."

A. Caiculation of the I, for totally impenetrabie
spheres

To calculate these ten integrals, we use the results the
expressions for Gfli) for totally impenetrable spheres obtained
by Torquato.'? In showing the equivalence of the Torquato
and Beran bounds on effective conductivity for totally im-
penetrable spheres, Beasley and Torquato'* calculated the
first six integrals and found that

I,=—2R%9, (6.1)
I;=pR>/3, (6.2)
L;=3% p’R(—2+ ¢,), (6.3)
=-2/9, (6.4)
=pd,Q/R3, (6.5)
and
[7=% 92A¢2’ (6.6)
where
© 2
Q=R? J 2Rdr AT ga(r), 6.7)
and
4366 J. Appl. Phys., Vol. 77, No. 8, 1 May 1995

§[Ask7 4 By(ky ' — iy D1+ S Capy  + Da(py ' =

K= ) T B (=1 T 2oy F Dalia— 2]
(5.36)
and
—~1
(5.37)
)]

A—3—29"“§2 =0t [ [ e alostrs)

Py(u)

‘gz(r)gz(s)]—r—r‘z_' (6.8)

Here P, is the /th Legendre polynomial and g5 is the three-
particle distribution function, which is related to the function
p3 defined in Eq. (3.3) by [cf. Eq. (3.11)]
g3(r.s,t)=ps(r.s,1)1p>. (6.9)
To calculate Iz and [y, we calculate the following
integral:

2 aR® pR® (RS
"4rGP(r) .
R

» (aR™ bR® CcR®
=27rpj dr —3 T+—— dss dugz(t)

N R t+s
=27rp"f dttgz(t)J’ dssf dre(r)
0 0 le—s|

K [2R2 PR, R (6.10
This calculation was done by substituting Eq. (18) of Ref.
14, using the change of variable in Eq. (4.24), and changing
the order of integration.

For impenetrable spheres, g(r)=0 for r<2R.
this, we find that

Using

- Rwad ) aRB(7t*+ 142R*+3R%)
[=p7n - g, (1) T(2—RY)

bR (5t*+3R?) cR®
(6.11)

S(E—R%)’ + (7R
[Not surprisingly, we obtain Eq. (6.5) after appropriate sub-
stitution of a, b, and c.] We conclude, using Egs. (5.13),
(5.14), (5.32) and (5.33), that
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Is—z_4 PR3 (B + py)? 72Y+ 55 PIR®
X (9 k7 +48k; g +92ut) Y20 - (6.12)
and ' '
Iy=3F paR*(Bry+py) uiy*Y + 3 pnR®
X9k + 6k +8ut) iy Q, (6.13)
where
Y= —wadrrzgz(r) Wy (r) (6.14)
29 Jar
~and W, is given in Eq. (35) of Ref. 22.
In a similar fashion, we find that
Iio=—§(3x;+p1)*¥*RC. (6.15)

Finally, after a spherical harmonics expansion, /;; is identical

to an intermediate expression of Ref. 22 except for a trivial

factor, and so ,
111=25p* 7R (3 Ky + )2 ™V,

where ¥ is Eq. (40) of Ref.
of that reference.

(6.16)

B. Equivalence of bounds on «,

The Beran—Molyneux bounds on «, are

3¢ pa(ky—Kp)?

= {r)— 3(;2)-}-4(;1,){ (6.17)
and
- 4¢1¢2(K£]-Kfl)2]—l »
Ke"’|:<K l)”‘ 4(;&—1)_}_3(#—1){ B (618)
where
(BY;=b181+ b2l - (6.19)

for any property b. In this equation {,=1—{¢,; is a three-
point microstructural parameter defined by

{r= J J dr ds[Sg(r 5,t)

_So(r)So(S)/(bg]_(gl

167 ¢ $2
(6.20)

where again P,(u) is the second-order Legendre polynomial.

The n-point probability functions S, give the probabilities of
finding » points in the particle phase. For totally impen- -

etrable spheres, S; is expressible as the sum of a six-fold
integral over g, and a nine-fold integral over g;. Lado and
Torquato™ simplified ¢, for this system and found that

{r=(3Q ¢, +A$3)/ by, (6.21)

where () and A were defined in Egs. (6.7) and (6.8).
From the results of the previous subsection, the con-
stants in the bounds (4.26) and (4.27) are

A1=9¢1¢, (6.22)
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22 after substitution of Eq. (57) -

B1=9¢%¢,, (6.23)

Ci1=6¢1¢,, (6.24)
and

D;=18¢3Q+6#A (6.25)

for a system of totally impenetrable spheres. Substituting
these expressions into Egs. (4.26) and (4.27) shows that
these bounds are indeed equivalent to the Beran—Molyneux
bounds of Eqs. (6.17) and (6.18). The trial fields used in the
Beran—Molyneux bounds are based on small contrast expan-
sions.

C. Effective shear modulus bounds

We now consider the bounds on the effective shear
modulus for suspensions of totally impenetrable spheres.
Previous three-point bounds on u, have been written in the
form

6¢1¢2(P«2_M1)2
pes{p)— 6()+© (6.26)
and
- _ ¢1¢2(/~02—1"‘/L1—1)2
w, = (w Y- (-0 T6E . 6.27)
as shown in Refs. 10 and 11. In these bounds,
(BYp=bim+bam, (6.28)

as above, where 7,=1— 17, is another three-point micro-
structural parameter (not to be confused with the reduced
density 77) defined by

5;
7= e ~——-2———56W¢¢jfdrds[S3(rst)
—Sz(r)sz<s>/¢2]—“3(—r) (6.29)

where P,(u) is the fourth-order Legendre polynomial. Sen,
Lado, and Torquato® simplified #, for systems of totally
impenetrable spheres in a manner analogous to the simplifi-
cation of ¢, and found that

7= d5(Y + ), (6.30)

where'Y and ¥ were defined in Egs. (6.14) and (6.16), re-
spectively.

From Egs. (6.1)-(6.6), (6.11), (6.15), and (6.16), we see
that the constants defined by Eqs. (5.24)—(5.31) are given by

A2=240u3 ¥ 1 b2 (6.31)
By=240u1y*¢1 20, (632)
C2=60(3 1} +8x1 a1 +8ul) V> b1 o, (6.33)

Dy=T2(k1+21)2 Y 7 pp+60(2 k1 +3 1) 1 ¥ 1
X Lo+ 123K+ py)? 92 ¢1¢2772, (6.34)
A3—2160K1[L1’y ¢1¢2, (6.35)
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B3=2160k7 17 ¥ $1 6282,
. C3=40p}(27k + 48k +32u3) VP 1 s

(6.36)
(6.37)

After substitution into Eqs. (5.36) and (5.37), we find that the
present bounds on u, can also be represented in the form of
Egs. (6.26) and (6.27), where we replace ® and E with

and 0,= 1003( i)+ 5 (20, +3 e ) mh+ (B + 1 )X )
D3=8u1(9x;1+811)* ¥ 1o+ 24003 (2 ke +3 1) 1 ¥ 1 Gt 2 (6.39)
X by Palat+ 480 (3 + 1)) VP by (638)  and
|
- _ 1063k )t 5p (201 + 3 ) (™ Dt B+ )X ™), (6 40)
=1 (91 +8xy)* ' .

For systems which satisfy «;>«, and w;> u,,

(9 +8u)
= = V— .
0,<=0y; PR (6.41)
and so the upper bound on w, is more restrictive than the
Hashin—Shtrikman upper bound, in which ® in Eq. (6.26) is
replaced by ©s.* Likewise, for systems which satisfy
K1<wy and p<p,,

Ky t2py
B9k +8uy)’

and so the lower bound on u, is more restrictive than the
Hashin—Shtrikman lower bound.

At a given volume fraction ¢,, the cluster upper bound
will be more restrictive than the McCoy upper bound for
some choices of the elastic moduli and less restrictive for
others; which is determined by the values of £, and 7, at
volume fraction ¢, and the larger of ry/r; and /.-
This property is also true of the lower bound. However, both
bounds will not be as restrictive as the Milton—Phan-Thien
bounds, which are based on small-contrast trial fields.

We now calculate the cluster bounds for two different
infinite-contrast cases, which are the most difficult to treat
theoretically. We first consider a system of spherical voids
(i.e., k=, =0). For this special case, the cluster bound is
identical to the McCoy bound. The four upper bounds are
shown in Figure 1, using the values of {, obtained by simu-
lation in Ref. 15 and the first-order approximation to #, in
Ref. 16. As we see, the cluster bound is a substantial im-
provement upon the Hashin—Shtrikman bound and almost
identical to the Milton—Phan-Thien bound, although the nu-
merical difference between the two bounds is slight. . .

The second infinite-contrast case which we now describe
is an incompressible composite with impenetrable rigid
spherical inclusions (i.e., x;=xy = and w,3 u;). For such
a system, the only possible nontrivial bound is the lower
bound on the effective shear modulus; the determination of
M, for such systems is called the Einstein problem. The four
lower bounds are shown in Figure 2. Again, the cluster
bound for this case is identical to the McCoy bound, and
hence a substantial improvement on the Hashin—Shtrikman

m

31$EHSE (6.42)

bound. The Milton—Phan-Thien bound is once more only -

slightly more restrictive than the cluster bound.
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The precise reasons why the Milton—Phan-Thien bounds
on the shear modulus are slightly better than the correspond-
ing cluster bounds in these two infinite-contrast cases are
difficult to ascertain. By contrast, recall that the cluster
bounds for the bulk modulus are identical to the Beran-
Molyneux bounds, which (as in the case of Milton—Phan-
Thien bounds) are based on small-contrast trial fields.

Vii. CALCULATION OF BOUNDS FOR FULLY
PENETRABLE SPHERES

In the case of fully penetrable spheres, the cluster
bounds (4.26), (4.27), (5.36), and (5.37) can be evaluated
analytically. This is in contrast to the other three-point
bounds, which require numerical integration to determine the
parameters {, and 7, at a given volume fraction. In the
special case of a system of spherical voids, we find simple
analytical bounds which are nearly identical to the other
three-point bounds and also give an improvement for suffi-
ciently large ¢,. We also compare the cluster the sets of

1.0 T T y T —
—-— Hashin-Shtrikman
0.8 —— Cluster = McCoy -
----_ Milton-Phan-Thien
0.8 | K b
g
5 S
= .
04 | e .
\\
\~
\‘\
02 4
0.0 ] L 1 i} ) S
0.0 0.1 0.2 0.3 0.4 0.5 0.6

4,

FIG: 1. The four upper bounds on u, for totally impenetrable spherical
voids. The cluster bound for this system is identical to the McCoy bound, a
considerable improvement on the Hashin—Shtrikman bound, and nearly
identical to the Milton—Phan-Thien bound.
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bounds in the Einstein limit. Finally, we examine the relation
of the cluster bounds on the elastic moduli to the cluster
bounds on effective conductivity.

For fully penetrable spheres we have'?

77=“hl ¢1’ (71)
o x<R,
(23 =
Gy (x) [pqu, >R, (7.2)
h(x)=0, (7.3)
and '
_P2¢] »  X1.%2<R,
Q(XII’XZ)—[ 0, otherwise. 7.4

Using these relations in Eqgs. (4.26), (4.27), (5.36), and
(5.37) yields

<(i0)- 377¢%(';<;1_K2)2
K T B il — k) 1+ 4y

and

(7.5)

] gl )
I
K";((K ) A[ry =i (ry = DI1F3 (™Y

(7.6)
6 1}t~ 1iz)? _
I‘L8$</L>— _ o Y (77)
6[pe— @1 (= )]+ 0, :
and
2, -1 —1y2 -1
_ 77¢1(/1'1 T My )
MB(#I— = s (7.8)
S| wy ' —ndi(py =) +68,
where '
10(re) 3 +{ ) (9 T+ 160, g +167) 79)
o2 (ki1 +2pu1)* ’ )
6 T L—) T T =
5t —-=— Hashin-Shtrikman ]
- Cluster = McCoy
- Milton-Phan-Thien P
0 _— ] 2. 1 L] L 1 K}
0.0 0.1 0.2 0.3 0.4 0.5 0.6

o,

FIG. 2. The four lower bounds on u, for the Einstein problem with totally
impenetrable inclusions. The cluster bound is identical to the McCoy bound,
a considerable improvement on the Hashin—Shtrikman bound, and nearly
identical to the Milton—Phan-Thien bound.
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FIG. 3. The upper bound on «, for a system of fully penetrable spherical
voids with »;=0.3. The cluster and Beran—-Molyneux bounds are nearly
identical, crossing around ¢,=0.60.

and
_ 10(k™ D e+ (T IO G + 16k g + 16p)
s (Ox, +841) '

(7.10)

As expected, for small ¢, these bounds collapse to the well-
known dilute limits.”

A. Spherical voids

If the spherical inclusions are actually voids, then the
lower bounds trivially become zero, while the upper bounds
reduce to

Ke . 4f¢1 :
and
e 9+8
M ( ) b1 (7.12)

S Gp(1+2)+ (98P’

where f=p;/k;=(3—6v)/(2+2v;) and v; is Poisson’s
ratio for phase i.

Interestingly, these bounds are nearly identical to the
other three-point bounds, as indicated in Fig. 3. This obser-
vation holds for all possible values of v;, including a matrix
with a negative Poisson’s ratio.?* (The values of £, and 7,
obtained from numerical integration are found in Refs. 17
and 18, respectively.) For small ¢, the previous three-point
bounds are marginally better than the above cluster bounds,
while the cluster bounds are marginally better than the
Beran—Molyneux, McCoy, and Milton—Phan-Thien bounds
for sufficiently large ¢, .

B. Einstein problem

We now reconsider the Einstein problerh, allowing the
particles to be fully penetrable. For this system, the cluster
lower bound on u, reduces to
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5 + ——~ McCoy / N

-------- ‘Milton-Phan-Thien 7/ 4
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

&

FIG. 4. The four lower bounds on pu, for the Einstein problem with fully
penetrable inclusions. The cluster bound in this case is not as sharp as the
McCoy and Milton—Phan-Thien bounds.

Mo 3n+2

=

j3) 2¢,
This bound is not as sharp as the McCoy and Milton—Phan-
Thien bounds, as shown in Figure 4. However, the present

bound was obtained purely by analytical means, while evalu-
ation of the other bounds requires numerical integrations.'®

(7.13)

C. Cross-property relations

*  'We now consider a system of fully penetrable spheres in
which the matrix and spheres also have electrical conductivi-
ties o; and o, respectively. Torquato'? derived the follow-
ing bounds for the effective conductivity o, of this system:

77¢%(0'2“ 0'1)2

7= 3 o, o (1 £ 2d5— 787

(7.14)

and
29¢3(07 '~ 07 )’ !

_1_
o=\ {07) 307+ (05 —07 N2+ ¢ 27¢)

It has been shown™?S that if k,/Kk;<o,/0; and the
phase Poisson’s ratios are non-negative, then

ki =0,/07.

(7.16)

Likewise, if py/u;<0,/0o; and the phase Poisson’s ratios
are non-negative, then

ol =co,loy. (7.17)

It is straightforward to show that Eq. (7.16) remains true
if x, and o, are replaced by the bounds in Egs. (7.5), (7.14)
and Eqgs. (7.6), (7.15) if «,/x; =0, /0; and the phase Pois-
son’s ratios are non-negative, and becomes an equality if the
phase Poisson’s ratios are both equal to zero.

Similarly, Egs. (7.7), (7.14) and Egs. (7.8), (7.15) satisty
Eq. (7.17) if wy/p=04/0 and the phase Poisson’s ratios
are non-negative. v »
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Vill. CONCLUSIONS

In this article rigorous bounds on the effective elastic
moduli of suspensions of spheres of variable penetrability
have been derived and shown to depend on three-point mi-
crostructural information. Our method is analogous to previ-
ously derived cluster bounds on the effective conductivity of
suspensions of spheres. The general bounds due to Beran and
Molyneux, McCoy, and Milton and Phan-Thien have been
compared to the cluster bounds. For the special case of to-
tally impenetrable spheres, the cluster bounds on the effec-
tive bulk modulus and the Beran—Molyneux bounds are
shown to be identical, while the cluster bounds on the effec-
tive shear modulus are somewhat different than the McCoy
and Milton—Phan-Thien bounds. The cluster bounds, how-
ever, are easier to compute when the spheres are allowed to
overlap, providing an improvement for the special case of
fully penetrable spherical voids with sufficiently high vol-
ume fraction of voids.
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APPENDIX A: SOLUTION OF THE SINGLE SPHERE
BOUNDARY-VALUE PROBLEM

Consider a matrix containing a single spherical inclusion
with radius R centered at the origin, with an applied strain
field { €) at infinity. We divide the microscopic strain into the
average strain and the perturbation caused by the spherical
inclusion; i.e.,

e={e)+¢€*. (A1)

We now take {€)=1I, the unit dyadic. The solution of the

elasticity equations for this case is well documented.”” Since

the strain is at infinity is spherically symmetric, the displace-

ment is only dependent on radius and so the equilibrium

conditions of Eq. (2.10) reduce to
Fu 20u 2

+—-— ——==u=0,
P 7

rér r (A2)

which, after satisfying the boundary condition and continuity
along the interface, has solution

u(r)=k1r+;§, (A3)
where
3k, +4
TR R,
ky={ 3Kkatdu (A4)
1, r>R,
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0, r<R,
ko= K1 Kq (AS)
~ 3 - !
3R PP r>R

Differentiation of this displacement yields the strain pertur-
bation field given in Eq. (4.3).

To obtain the stress perturbation field, we notice, since
¢,=0 for a single inclusion,

mh=1y—(mp=(k—} p) S j€ut2pue;
~((k— } ) Sjjept+2pey)
=(r—} ) Syl {em) + el ]+ 2ul (&) + el
— (1= § 1) G ) — 21 { €55)-

Setting {¢;;)= &;; yields Eq. (4.4).

If we instead take (€;;) = 8;; 8;; — 6,28}, the solution of
the boundary-value problem is considerably more involved.’
In this case, there is no spherical symmetry to reduce the
complexity of the equilibrium equations. If r=(x,y,z) and
r=|r|, then, under the assumption of isotropy, Christensen’s
solution for the displacement vector has components

(A6)

u=p(r)x(x*—y?)+[q(r)+11x, (A7)
ua=p(r)y(x*—y?)—[q(r)+11y, (A8)
us=p(r)z(x*—y?), (A9)

where p(r) and g(r) are given by Eqs. (5.10) and (5.11).
(This is similar to the form of the velocity of the flow due to
a sphere embedded in a pure straining motion in fluid per-
meability theory.?®) Differentiation of these displacements
yields Eqgs. (5.3)—(5.9). The stress perturbation field for this
case; i.e., Eq. (5.16), is derived using Eq. (A6).

APPENDIX B: SIMPLIFICATION OF ENSEMBLE
AVERAGES

We now present how the ensemble averages Egs. (4.6)—
{4.11) and (5.18)—(5.23) are simplified. To begin we take the
strain perturbation field €’ used in Section IV. To calculate
B, combination of Eq. (3.1), (3.6), and (4.1) gives '

B= f deng)(xl)e;‘;(xl)ez‘k(xl)

+f f dx; A%, Q(Xy,X;) €5(%y) €f3.(%7). (B1)
Let r=x; and s=x, have spherical coordinates (r,8,,¢,)
and (s,6,,¢,), respectively. Then the first integral of Eq.
(B1) is easily obtained using Eq. (4.3). We calculate the sec-
ond integral following Lado and Torquato® by first expand-
ing Q in Legendre polynomials; i.e.,

Q(r,8)= 2, Dy(r,s)Pp(ttss), (B2)

n=0

where
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2n+1 1
Dn(ras)= Tf_ldursQ(r5s)Pn(urs) (B3)
and
r-s
urs=:; . (B4)

The second integral can now be calculated by using the ad-
dition theorem®

" (n—m)!
Pn(urs)zpn(ur)Pn(us)+2 2 % PZ’

m=1

X(u,)P?(u,)cos m(¢r'—¢s)’ (B5)

where u,=cos6, and u;=cosé,, and the orthogonality prop-
erties of the Legendre polynomials.
The ensemble average A; may be obtained from Eg.
(B1) by replacing G$? and Q by p and p2&, respectively.
To calculate D, we proceed as above and find that

pi= [ ax P+ [ [ ax axotx )

X e(x1) €fi(x,) — § (1P e €. (B6)

D can now be calculated using Eq. (4.3). C; can be
obtained from D; by again replacing G(zz) and Q by p and
p’h, respectively, and replacing the final term with
~ 3 {€xz€n)-

Finally, the ensemble averages of Section V may be de-
rived as above by using Egs. (5.3)—(5.9) and Eq. (5.16) in-
stead of Eq. (4.3). These computations, although entirely el-
ementary, are somewhat lengthy due to the complicated form
of the solution of the single sphere boundary value problem.
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